SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity
- URL: http://arxiv.org/abs/2410.20790v1
- Date: Mon, 28 Oct 2024 07:13:25 GMT
- Title: SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity
- Authors: Kunyun Wang, Jieru Zhao, Shuo Yang, Wenchao Ding, Minyi Guo,
- Abstract summary: We propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation.
SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead.
- Score: 15.872209884833977
- License:
- Abstract: Deep learning models have become pivotal in the field of video processing and is increasingly critical in practical applications such as autonomous driving and object detection. Although Vision Transformers (ViTs) have demonstrated their power, Convolutional Neural Networks (CNNs) remain a highly efficient and high-performance choice for feature extraction and encoding. However, the intensive computational demands of convolution operations hinder its broader adoption as a video encoder. Given the inherent temporal continuity in video frames, changes between consecutive frames are minimal, allowing for the skipping of redundant computations. This technique, which we term as Diff Computation, presents two primary challenges. First, Diff Computation requires to cache intermediate feature maps to ensure the correctness of non-linear computations, leading to significant memory consumption. Second, the imbalance of sparsity among layers, introduced by Diff Computation, incurs accuracy degradation. To address these issues, we propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation. We integrate these techniques into our framework, SparseTem, to seamlessly support various CNN-based video encoders. SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead. Extensive experimental results demonstrate that SparseTem sets a new state-of-the-art by effectively utilizing temporal continuity to accelerate CNN-based video encoders.
Related papers
- Faster Diffusion Action Segmentation [9.868244939496678]
Temporal Action Classification (TAS) is an essential task in video analysis, aiming to segment and classify continuous frames into distinct action segments.
Recent advances in diffusion models have demonstrated substantial success in TAS tasks due to their stable training process and high-quality generation capabilities.
We propose EffiDiffAct, an efficient and high-performance TAS algorithm.
arXiv Detail & Related papers (2024-08-04T13:23:18Z) - Binarized Low-light Raw Video Enhancement [49.65466843856074]
Deep neural networks have achieved excellent performance on low-light raw video enhancement.
In this paper, we explore the feasibility of applying the extremely compact binary neural network (BNN) to low-light raw video enhancement.
arXiv Detail & Related papers (2024-03-29T02:55:07Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
We propose a novel semantic compression method, autoencoder-based CNN architecture (AECNN) for effective semantic extraction and compression in partial offloading.
In the semantic encoder, we introduce a feature compression module based on the channel attention mechanism in CNNs, to compress intermediate data by selecting the most informative features.
In the semantic decoder, we design a lightweight decoder to reconstruct the intermediate data through learning from the received compressed data to improve accuracy.
arXiv Detail & Related papers (2024-01-19T15:19:47Z) - Spatiotemporal Attention-based Semantic Compression for Real-time Video
Recognition [117.98023585449808]
We propose a temporal attention-based autoencoder (STAE) architecture to evaluate the importance of frames and pixels in each frame.
We develop a lightweight decoder that leverages a 3D-2D CNN combined to reconstruct missing information.
Experimental results show that ViT_STAE can compress the video dataset H51 by 104x with only 5% accuracy loss.
arXiv Detail & Related papers (2023-05-22T07:47:27Z) - EfficientSCI: Densely Connected Network with Space-time Factorization
for Large-scale Video Snapshot Compressive Imaging [6.8372546605486555]
We show that an UHD color video with high compression ratio can be reconstructed from a snapshot 2D measurement using a single end-to-end deep learning model with PSNR above 32 dB.
Our method significantly outperforms all previous SOTA algorithms with better real-time performance.
arXiv Detail & Related papers (2023-05-17T07:28:46Z) - ReBotNet: Fast Real-time Video Enhancement [59.08038313427057]
Most restoration networks are slow, have high computational bottleneck, and can't be used for real-time video enhancement.
In this work, we design an efficient and fast framework to perform real-time enhancement for practical use-cases like live video calls and video streams.
To evaluate our method, we emulate two new datasets that real-world video call and streaming scenarios, and show extensive results on multiple datasets where ReBotNet outperforms existing approaches with lower computations, reduced memory requirements, and faster inference time.
arXiv Detail & Related papers (2023-03-23T17:58:05Z) - DeltaCNN: End-to-End CNN Inference of Sparse Frame Differences in Videos [16.644938608211202]
Convolutional neural network inference on video data requires powerful hardware for real-time processing.
We present a sparse convolutional neural network framework that enables sparse frame-by-frame updates.
We are the first to significantly outperform the dense reference, cuDNN, in practical settings, achieving speedups of up to 7x with only marginal differences in accuracy.
arXiv Detail & Related papers (2022-03-08T10:54:00Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
We propose a traditional-neural mixed coding framework that takes advantage of both traditional codecs and neural networks (NNs)
The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved.
We build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach.
arXiv Detail & Related papers (2022-02-06T16:29:15Z) - Low-Fidelity End-to-End Video Encoder Pre-training for Temporal Action
Localization [96.73647162960842]
TAL is a fundamental yet challenging task in video understanding.
Existing TAL methods rely on pre-training a video encoder through action classification supervision.
We introduce a novel low-fidelity end-to-end (LoFi) video encoder pre-training method.
arXiv Detail & Related papers (2021-03-28T22:18:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.