The Software Landscape for the Density Matrix Renormalization Group
- URL: http://arxiv.org/abs/2506.12629v2
- Date: Wed, 09 Jul 2025 08:10:15 GMT
- Title: The Software Landscape for the Density Matrix Renormalization Group
- Authors: Per Sehlstedt, Jan Brandejs, Paolo Bientinesi, Lars Karlsson,
- Abstract summary: The density matrix renormalization group (DMRG) algorithm is a cornerstone computational method for studying quantum many-body systems.<n>Despite its broad applicability across fields such as materials science, quantum chemistry, and quantum computing, numerous independent implementations have been developed.<n>This survey maps the rapidly expanding DMRG software landscape, providing a comprehensive comparison of features among 35 existing packages.
- Score: 0.7165255458140439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The density matrix renormalization group (DMRG) algorithm is a cornerstone computational method for studying quantum many-body systems, renowned for its accuracy and adaptability. Despite DMRG's broad applicability across fields such as materials science, quantum chemistry, and quantum computing, numerous independent implementations have been developed. This survey maps the rapidly expanding DMRG software landscape, providing a comprehensive comparison of features among 35 existing packages. We found significant overlap in features among the packages when comparing key aspects, such as parallelism strategies for high-performance computing and symmetry-adapted formulations that enhance efficiency. This overlap suggests opportunities for modularization of common operations, including tensor operations, symmetry representations, and eigensolvers, as the packages are mostly independent and share few third-party library dependencies where functionality is factored out. More widespread modularization and standardization would result in reduced duplication of efforts and improved interoperability. We believe that the proliferation of packages and the current lack of standard interfaces and modularity are more social than technical. We aim to raise awareness of existing packages, guide researchers in finding a suitable package for their needs, and help developers identify opportunities for collaboration, modularity standardization, and optimization. Ultimately, this work emphasizes the value of greater cohesion and modularity, which would benefit DMRG software, allowing these powerful algorithms to tackle more complex and ambitious problems.
Related papers
- Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation [72.44384066166147]
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains.<n>Existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures.<n>We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch.
arXiv Detail & Related papers (2025-07-24T09:17:41Z) - Large Language Models for Design Structure Matrix Optimization [4.513609458468522]
In complex engineering systems, the interdependencies among components or development activities are often modeled and analyzed using Design Structure Matrix (DSM)<n>Reorganizing elements within a DSM to minimize feedback loops and enhance modularity or process efficiency constitutes a challenging optimization problem in engineering design and operations.<n>In this study, we explore the potential of Large Language Models (LLMs) for helping solve such CO problems by leveraging their capabilities for advanced reasoning and contextual understanding.
arXiv Detail & Related papers (2025-06-11T13:53:35Z) - Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems [25.882461853973897]
We propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), which guides policy updates by estimating relative reward advantages.<n>MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead.<n>We also introduce three group rollout sampling strategies that trade off between efficiency and effectiveness.
arXiv Detail & Related papers (2025-06-03T10:17:19Z) - RAG/LLM Augmented Switching Driven Polymorphic Metaheuristic Framework [5.10888539576355]
Polymorphic Metaheuristic Framework (PMF) is a self-adaptive metaheuristic switching mechanism driven by real-time performance feedback and dynamic algorithmic selection.<n>By integrating AI-driven decision-making and self-correcting mechanisms, PMF paves the way for scalable, intelligent, and autonomous optimization frameworks.
arXiv Detail & Related papers (2025-05-20T01:41:22Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
This paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) to design transmission strategies.
Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm.
We propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem.
arXiv Detail & Related papers (2024-04-14T03:44:54Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Towards Global Optimality in Cooperative MARL with the Transformation
And Distillation Framework [26.612749327414335]
Decentralized execution is one core demand in cooperative multi-agent reinforcement learning (MARL)
In this paper, we theoretically analyze two common classes of algorithms with decentralized policies -- multi-agent policy gradient methods and value-decomposition methods.
We show that TAD-PPO can theoretically perform optimal policy learning in the finite multi-agent MDPs and shows significant outperformance on a large set of cooperative multi-agent tasks.
arXiv Detail & Related papers (2022-07-12T06:59:13Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Many-Objective Software Remodularization using NSGA-III [17.487053547108516]
We propose a novel many-objective search-based approach using NSGA-III.
The process aims at finding the optimal remodularization solutions that improve the structure of packages, minimize the number of changes, preserve semantics coherence, and re-use the history of changes.
arXiv Detail & Related papers (2020-05-13T18:34:15Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.