RAG/LLM Augmented Switching Driven Polymorphic Metaheuristic Framework
- URL: http://arxiv.org/abs/2505.13808v1
- Date: Tue, 20 May 2025 01:41:22 GMT
- Title: RAG/LLM Augmented Switching Driven Polymorphic Metaheuristic Framework
- Authors: Faramarz Safi Esfahani, Ghassan Beydoun, Morteza Saberi, Brad McCusker, Biswajeet Pradhan,
- Abstract summary: Polymorphic Metaheuristic Framework (PMF) is a self-adaptive metaheuristic switching mechanism driven by real-time performance feedback and dynamic algorithmic selection.<n>By integrating AI-driven decision-making and self-correcting mechanisms, PMF paves the way for scalable, intelligent, and autonomous optimization frameworks.
- Score: 5.10888539576355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metaheuristic algorithms are widely used for solving complex optimization problems, yet their effectiveness is often constrained by fixed structures and the need for extensive tuning. The Polymorphic Metaheuristic Framework (PMF) addresses this limitation by introducing a self-adaptive metaheuristic switching mechanism driven by real-time performance feedback and dynamic algorithmic selection. PMF leverages the Polymorphic Metaheuristic Agent (PMA) and the Polymorphic Metaheuristic Selection Agent (PMSA) to dynamically select and transition between metaheuristic algorithms based on key performance indicators, ensuring continuous adaptation. This approach enhances convergence speed, adaptability, and solution quality, outperforming traditional metaheuristics in high-dimensional, dynamic, and multimodal environments. Experimental results on benchmark functions demonstrate that PMF significantly improves optimization efficiency by mitigating stagnation and balancing exploration-exploitation strategies across various problem landscapes. By integrating AI-driven decision-making and self-correcting mechanisms, PMF paves the way for scalable, intelligent, and autonomous optimization frameworks, with promising applications in engineering, logistics, and complex decision-making systems.
Related papers
- A Perturbation and Speciation-Based Algorithm for Dynamic Optimization Uninformed of Change [1.4425878137951238]
Perturbation and Speciation-Based Particle Swarm Optimization (PSPSO) is a robust algorithm for uninformed dynamic optimization.<n> PSPSO combines speciation-based niching, deactivation, and a newly proposed random perturbation mechanism to handle DOPs.<n> PSPSO shows strength in functions with high dimensionality or high frequency of change in the Generalized Moving Peaks Benchmark.
arXiv Detail & Related papers (2025-05-16T18:53:37Z) - PER-DPP Sampling Framework and Its Application in Path Planning [5.158004370485019]
Decision-centric reinforcement learning frameworks have gained prominence in advanced control system research.<n>This study introduces methodological improvements to address sample challenges in reinforcement learning experience replay mechanisms.<n>By incorporating determinant point processes (DPP) for diversity assessment, we develop a dual-criteria sampling framework with adaptive selection protocols.
arXiv Detail & Related papers (2025-03-10T14:58:16Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - MOANA: Multi-Objective Ant Nesting Algorithm for Optimization Problems [21.80971564725773]
The Multi-Objective Ant Nesting Algorithm (MOANA) is a novel extension of the Ant Nesting Evolutionary Algorithm (ANA)<n>MOANA addresses key limitations of traditional evolutionary algorithms by improving scalability and diversity in multi-objective scenarios.<n>MOANA's applicability to real-world engineering optimization, such as welded beam design, showcases its ability to generate a broad range of optimal solutions.
arXiv Detail & Related papers (2024-11-08T18:31:53Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Large Language Model Aided Multi-objective Evolutionary Algorithm: a Low-cost Adaptive Approach [4.442101733807905]
This study proposes a new framework that combines a large language model (LLM) with traditional evolutionary algorithms to enhance the algorithm's search capability and generalization performance.
We leverage an auxiliary evaluation function and automated prompt construction within the adaptive mechanism to flexibly adjust the utilization of the LLM.
arXiv Detail & Related papers (2024-10-03T08:37:02Z) - An Adaptive Metaheuristic Framework for Changing Environments [0.0]
This paper introduces an Adaptive Metaheuristic Framework (AMF) designed for dynamic environments.
AMF combines a dynamic representation of problems, a real-time sensing system, and adaptive techniques to navigate continuously changing optimization environments.
arXiv Detail & Related papers (2024-04-18T13:47:53Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
We propose the mean-field proximal policy optimization (MF-PPO) algorithm, at the core of which is a permutation-invariant actor-critic neural architecture.
We prove that MF-PPO attains the globally optimal policy at a sublinear rate of convergence.
In particular, we show that the inductive bias introduced by the permutation-invariant neural architecture enables MF-PPO to outperform existing competitors.
arXiv Detail & Related papers (2021-05-18T04:35:41Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.