MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection
- URL: http://arxiv.org/abs/2506.12697v1
- Date: Sun, 15 Jun 2025 02:54:25 GMT
- Title: MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection
- Authors: Yuxiang Wang, Xuecheng Bai, Boyu Hu, Chuanzhi Xu, Haodong Chen, Vera Chung, Tingxue Li,
- Abstract summary: Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance.<n>Existing multi-scale fusion methods help, but add computational burden and blur fine details.<n>We propose a unified fusion framework that tightly couples global context with local detail to boost detection performance.
- Score: 10.135137525886098
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance, but it is hampered by tiny object size, low signal-to-noise ratios, and limited feature extraction. Existing multi-scale fusion methods help, but add computational burden and blur fine details, making small object detection in cluttered scenes difficult. To overcome these challenges, we propose the Multi-scale Global-detail Feature Integration Strategy (MGDFIS), a unified fusion framework that tightly couples global context with local detail to boost detection performance while maintaining efficiency. MGDFIS comprises three synergistic modules: the FusionLock-TSS Attention Module, which marries token-statistics self-attention with DynamicTanh normalization to highlight spectral and spatial cues at minimal cost; the Global-detail Integration Module, which fuses multi-scale context via directional convolution and parallel attention while preserving subtle shape and texture variations; and the Dynamic Pixel Attention Module, which generates pixel-wise weighting maps to rebalance uneven foreground and background distributions and sharpen responses to true object regions. Extensive experiments on the VisDrone benchmark demonstrate that MGDFIS consistently outperforms state-of-the-art methods across diverse backbone architectures and detection frameworks, achieving superior precision and recall with low inference time. By striking an optimal balance between accuracy and resource usage, MGDFIS provides a practical solution for small-object detection on resource-constrained UAV platforms.
Related papers
- LGM-Pose: A Lightweight Global Modeling Network for Real-time Human Pose Estimation [9.000760165185532]
A single-branch lightweight global modeling network (LGM-Pose) is proposed to address these challenges.<n>In the network, a lightweight MobileViM Block is designed with a proposed Lightweight Attentional Representation Module (LARM)
arXiv Detail & Related papers (2025-06-05T02:29:04Z) - AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection [58.67129770371016]
We propose a novel IRSTD framework that reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization.<n>AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy.
arXiv Detail & Related papers (2025-05-21T07:02:05Z) - Learning to Borrow Features for Improved Detection of Small Objects in Single-Shot Detectors [0.0]
We propose a novel framework that enables small object representations to "borrow" discriminative features from larger, semantically richer instances within the same class.<n>Our approach significantly boosts small object detection accuracy over baseline methods, offering a promising direction for robust object detection in complex visual environments.
arXiv Detail & Related papers (2025-04-30T01:18:33Z) - MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection [0.1759252234439348]
This paper proposes a network architecture named MSCA-Net, which integrates three key components.<n>MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales.<n>PCBAM captures the correlation between global and local features through a correlation matrix-based strategy.<n> CAB enhances the representation of critical features by assigning greater weights to them, integrating both low-level and high-level information.
arXiv Detail & Related papers (2025-03-21T14:42:31Z) - Efficient Feature Fusion for UAV Object Detection [9.632727117779178]
Small objects, in particular, occupy small portions of images, making their accurate detection difficult.<n>Existing multi-scale feature fusion methods address these challenges by aggregating features across different resolutions.<n>We propose a novel feature fusion framework specifically designed for UAV object detection tasks.
arXiv Detail & Related papers (2025-01-29T20:39:16Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.