Humanity's Last Code Exam: Can Advanced LLMs Conquer Human's Hardest Code Competition?
- URL: http://arxiv.org/abs/2506.12713v1
- Date: Sun, 15 Jun 2025 04:03:31 GMT
- Title: Humanity's Last Code Exam: Can Advanced LLMs Conquer Human's Hardest Code Competition?
- Authors: Xiangyang Li, Xiaopeng Li, Kuicai Dong, Quanhu Zhang, Rongju Ruan, Xinyi Dai, Xiaoshuang Liu, Shengchun Xu, Yasheng Wang, Ruiming Tang,
- Abstract summary: Humanity's Last Code Exam (HLCE) comprises 235 most challenging problems from the International Collegiate Programming Contest (ICPC World Finals) and the International Olympiad in Informatics (IOI)<n>As part of HLCE, we design a harmonized online-offline sandbox that guarantees fully reproducible evaluation.<n>We observe that even the strongest reasoning LLMs: o4-mini(high) and Gemini-2.5 Pro, achieve pass@1 rates of only 15.9% and 11.4%, respectively.
- Score: 39.99519977079694
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Code generation is a core capability of large language models (LLMs), yet mainstream benchmarks (e.g., APPs and LiveCodeBench) contain questions with medium-level difficulty and pose no challenge to advanced LLMs. To better reflected the advanced reasoning and code generation ability, We introduce Humanity's Last Code Exam (HLCE), comprising 235 most challenging problems from the International Collegiate Programming Contest (ICPC World Finals) and the International Olympiad in Informatics (IOI) spanning 2010 - 2024. As part of HLCE, we design a harmonized online-offline sandbox that guarantees fully reproducible evaluation. Through our comprehensive evaluation, we observe that even the strongest reasoning LLMs: o4-mini(high) and Gemini-2.5 Pro, achieve pass@1 rates of only 15.9% and 11.4%, respectively. Meanwhile, we propose a novel "self-recognition" task to measure LLMs' awareness of their own capabilities. Results indicate that LLMs' self-recognition abilities are not proportionally correlated with their code generation performance. Finally, our empirical validation of test-time scaling laws reveals that current advanced LLMs have substantial room for improvement on complex programming tasks. We expect HLCE to become a milestone challenge for code generation and to catalyze advances in high-performance reasoning and human-AI collaborative programming. Our code and dataset are also public available(https://github.com/Humanity-s-Last-Code-Exam/HLCE).
Related papers
- LiveCodeBench Pro: How Do Olympiad Medalists Judge LLMs in Competitive Programming? [88.29001498765629]
Large language models (LLMs) now outperform elite humans in competitive programming.<n>We revisit this claim, examining how LLMs differ from human experts and where limitations still remain.<n>We introduce LiveCodeBench Pro, a benchmark composed of problems from Codeforces, ICPC, and IOI.<n>A team of Olympiad medalists annotates every problem for algorithmic categories and conducts a line-by-line analysis of failed model-generated submissions.
arXiv Detail & Related papers (2025-06-13T16:29:09Z) - How to Get Your LLM to Generate Challenging Problems for Evaluation [33.625052642068624]
CHASE is a unified framework to synthetically generate challenging problems using Large Language Models.<n>We implement CHASE to create evaluation benchmarks across three diverse domains.<n>The performance of state-of-the-art LLMs on these synthetic benchmarks lies in the range of 40-60% accuracy.
arXiv Detail & Related papers (2025-02-20T16:09:55Z) - Humanity's Last Exam [434.8511341499966]
Humanity's Last Exam (HLE) is a multi-modal benchmark at the frontier of human knowledge.<n>It consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences.<n>Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval.
arXiv Detail & Related papers (2025-01-24T05:27:46Z) - CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings [70.95565672516979]
Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments.<n>CodeElo is a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time.
arXiv Detail & Related papers (2025-01-02T13:49:00Z) - LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code [34.03774442237902]
Large Language Models applied to code-related applications have emerged as a prominent field.
Existing evaluation benchmarks (e.g., HumanEval, MBPP) are no longer sufficient for assessing their capabilities.
We propose LiveCodeBench, a comprehensive and contamination-free evaluation of LLMs for code.
arXiv Detail & Related papers (2024-03-12T17:58:04Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBench is the first large-scale freeform question-answering (QA) benchmark for code to our knowledge.
It comprises 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages.
We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings.
arXiv Detail & Related papers (2024-03-11T02:06:30Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.