CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
- URL: http://arxiv.org/abs/2501.01257v2
- Date: Fri, 03 Jan 2025 16:36:12 GMT
- Title: CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
- Authors: Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren, Bofei Gao, Yibo Miao, Yunlong Feng, Zekun Wang, Jian Yang, Zeyu Cui, Yang Fan, Yichang Zhang, Binyuan Hui, Junyang Lin,
- Abstract summary: Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments.
CodeElo is a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time.
- Score: 70.95565672516979
- License:
- Abstract: With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 25 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.
Related papers
- How to Get Your LLM to Generate Challenging Problems for Evaluation [33.625052642068624]
CHASE is a unified framework to synthetically generate challenging problems using Large Language Models.
We implement CHASE to create evaluation benchmarks across three diverse domains.
The performance of state-of-the-art LLMs on these synthetic benchmarks lies in the range of 40-60% accuracy.
arXiv Detail & Related papers (2025-02-20T16:09:55Z) - Do Large Language Model Benchmarks Test Reliability? [66.1783478365998]
We investigate how well current benchmarks quantify model reliability.
Motivated by this gap in the evaluation of reliability, we propose the concept of so-called platinum benchmarks.
We evaluate a wide range of models on these platinum benchmarks and find that, indeed, frontier LLMs still exhibit failures on simple tasks.
arXiv Detail & Related papers (2025-02-05T18:58:19Z) - HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation [28.295580042013547]
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs.
Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks.
arXiv Detail & Related papers (2024-12-30T18:58:58Z) - Simple and Provable Scaling Laws for the Test-Time Compute of Large Language Models [70.07661254213181]
We propose two principled algorithms for the test-time compute of large language models.
We prove theoretically that the failure probability of one algorithm decays to zero exponentially as its test-time compute grows.
arXiv Detail & Related papers (2024-11-29T05:29:47Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Can Language Models Solve Olympiad Programming? [40.54366634332231]
This paper introduces the USACO benchmark with 307 problems from the USA Computing Olympiad.
We construct and test a range of LM inference methods for competitive programming for the first time.
We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting.
arXiv Detail & Related papers (2024-04-16T23:27:38Z) - LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code [34.03774442237902]
Large Language Models applied to code-related applications have emerged as a prominent field.
Existing evaluation benchmarks (e.g., HumanEval, MBPP) are no longer sufficient for assessing their capabilities.
We propose LiveCodeBench, a comprehensive and contamination-free evaluation of LLMs for code.
arXiv Detail & Related papers (2024-03-12T17:58:04Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
We introduce AlphaCode, a system for code generation that can create novel solutions to problems that require deeper reasoning.
In simulated evaluations on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3%.
arXiv Detail & Related papers (2022-02-08T23:16:31Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
We introduce APPS, a benchmark for code generation.
Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges.
Recent models such as GPT-Neo can pass approximately 15% of the test cases of introductory problems.
arXiv Detail & Related papers (2021-05-20T17:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.