MCTS-Refined CoT: High-Quality Fine-Tuning Data for LLM-Based Repository Issue Resolution
- URL: http://arxiv.org/abs/2506.12728v1
- Date: Sun, 15 Jun 2025 05:42:01 GMT
- Title: MCTS-Refined CoT: High-Quality Fine-Tuning Data for LLM-Based Repository Issue Resolution
- Authors: Yibo Wang, Zhihao Peng, Ying Wang, Zhao Wei, Hai Yu, Zhiliang Zhu,
- Abstract summary: The paper proposes MCTS-INE, an enhanced Monte Carlo Tree Search (MCTS)-based algorithm that dynamically validates and optimize intermediate reasoning steps.<n> Experiments on SWE-bench Lite and SWE-bench Verified demonstrate that LLMs fine-tuned with our CoT dataset achieve substantial improvements over baselines.
- Score: 18.314436803012434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLMs demonstrate strong performance in auto-mated software engineering, particularly for code generation and issue resolution. While proprietary models like GPT-4o achieve high benchmarks scores on SWE-bench, their API dependence, cost, and privacy concerns limit adoption. Open-source alternatives offer transparency but underperform in complex tasks, especially sub-100B parameter models. Although quality Chain-of-Thought (CoT) data can enhance reasoning, current methods face two critical flaws: (1) weak rejection sampling reduces data quality, and (2) inadequate step validation causes error accumulation. These limitations lead to flawed reasoning chains that impair LLMs'ability to learn reliable issue resolution. The paper proposes MCTS-REFINE, an enhanced Monte Carlo Tree Search (MCTS)-based algorithm that dynamically validates and optimizes intermediate reasoning steps through a rigorous rejection sampling strategy, generating high-quality CoT data to improve LLM performance in issue resolution tasks. Key innovations include: (1) augmenting MCTS with a reflection mechanism that corrects errors via rejection sampling and refinement, (2) decomposing issue resolution into three subtasks-File Localization, Fault Localization, and Patch Generation-each with clear ground-truth criteria, and (3) enforcing a strict sampling protocol where intermediate outputs must exactly match verified developer patches, ensuring correctness across reasoning paths. Experiments on SWE-bench Lite and SWE-bench Verified demonstrate that LLMs fine-tuned with our CoT dataset achieve substantial improvements over baselines.Notably, Qwen2.5-72B- Instruct achieves 28.3%(Lite) and 35.0%(Verified) resolution rates, surpassing SOTA baseline SWE-Fixer-Qwen-72B with the same parameter scale, which only reached 24.7%(Lite) and 32.8%(Verified).
Related papers
- Fewer Hallucinations, More Verification: A Three-Stage LLM-Based Framework for ASR Error Correction [4.304383298057423]
We propose the Reliable Correction Framework (RLLM-CF), which consists of three stages: error pre-detection, chain-of-thought sub-tasks iterative correction, and reasoning process verification.<n>Experiments on AISHELL-1, AISHELL-2, and Librispeech show that the GPT-4o model enhanced by our framework achieves 21%, 11%, 9%, and 11.4% relative reductions in CER/WER.
arXiv Detail & Related papers (2025-05-30T08:40:49Z) - Enhancing Smart Contract Vulnerability Detection in DApps Leveraging Fine-Tuned LLM [0.7018579932647147]
Decentralized applications (DApps) face significant security risks due to vulnerabilities in smart contracts.<n>This paper proposes a novel approach leveraging fine-tuned Large Language Models (LLMs) to enhance smart contract vulnerability detection.
arXiv Detail & Related papers (2025-04-07T12:32:14Z) - Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.<n>One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.<n>We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.<n>This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.<n>We analyze experimental results obtained from testing DeepSeek-R1 on our benchmark and reveal the critical ethical concerns raised by this highly acclaimed model.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.<n>We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.<n>LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs [29.735465300269993]
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning.<n>This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP)<n>We evaluate our approach on two benchmark datasets: StepGame and SparQA.
arXiv Detail & Related papers (2024-11-27T18:04:05Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
We introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions.
To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline.
Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback.
arXiv Detail & Related papers (2024-10-09T01:25:10Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.