Adaptive Dropout: Unleashing Dropout across Layers for Generalizable Image Super-Resolution
- URL: http://arxiv.org/abs/2506.12738v1
- Date: Sun, 15 Jun 2025 06:21:39 GMT
- Title: Adaptive Dropout: Unleashing Dropout across Layers for Generalizable Image Super-Resolution
- Authors: Hang Xu, Wei Yu, Jiangtong Tan, Zhen Zou, Feng Zhao,
- Abstract summary: Blind Super-Resolution (blind SR) aims to enhance the model's generalization ability with unknown degradation.<n>Previous methods inspired by dropout, which enhances generalization by regularizing features, have shown promising results in blind SR.<n>We propose Adaptive Dropout, a new regularization method for blind SR models, which mitigates the inconsistency and facilitates application across intermediate layers.
- Score: 30.395464332809052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blind Super-Resolution (blind SR) aims to enhance the model's generalization ability with unknown degradation, yet it still encounters severe overfitting issues. Some previous methods inspired by dropout, which enhances generalization by regularizing features, have shown promising results in blind SR. Nevertheless, these methods focus solely on regularizing features before the final layer and overlook the need for generalization in features at intermediate layers. Without explicit regularization of features at intermediate layers, the blind SR network struggles to obtain well-generalized feature representations. However, the key challenge is that directly applying dropout to intermediate layers leads to a significant performance drop, which we attribute to the inconsistency in training-testing and across layers it introduced. Therefore, we propose Adaptive Dropout, a new regularization method for blind SR models, which mitigates the inconsistency and facilitates application across intermediate layers of networks. Specifically, for training-testing inconsistency, we re-design the form of dropout and integrate the features before and after dropout adaptively. For inconsistency in generalization requirements across different layers, we innovatively design an adaptive training strategy to strengthen feature propagation by layer-wise annealing. Experimental results show that our method outperforms all past regularization methods on both synthetic and real-world benchmark datasets, also highly effective in other image restoration tasks. Code is available at \href{https://github.com/xuhang07/Adpative-Dropout}{https://github.com/xuhang07/Adpative-Dropout}.
Related papers
- DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution [48.744290794713905]
In real-world scenarios, captured depth data often suffer from unconventional and unknown degradation due to sensor limitations and complex imaging environments.<n>We propose the Degradation Oriented and Regularized Network (DORNet), a novel framework designed to adaptively address unknown degradation in real-world scenes.<n>Our approach begins with the development of a self-supervised degradation learning strategy, which models the degradation representations of low-resolution depth data.<n>To facilitate effective RGB-D fusion, we further introduce a degradation-oriented feature transformation module that selectively propagates RGB content into the depth data based on the learned degradation priors.
arXiv Detail & Related papers (2024-10-15T14:53:07Z) - A Layer Selection Approach to Test Time Adaptation [0.2968738145616401]
Test Time Adaptation (TTA) addresses the problem of distribution shift by adapting a pretrained model to a new domain during inference.<n>We propose GALA, a novel layer selection criterion to identify the most beneficial updates to perform during TTA.
arXiv Detail & Related papers (2024-04-04T19:55:11Z) - Vanishing Feature: Diagnosing Model Merging and Beyond [1.1510009152620668]
We identify the vanishing feature'' phenomenon, where input-induced features diminish during propagation through a merged model.<n>We show that existing normalization strategies can be enhanced by precisely targeting the vanishing feature issue.<n>We propose the Preserve-First Merging'' (PFM) strategy, which focuses on preserving early-layer features.
arXiv Detail & Related papers (2024-02-05T17:06:26Z) - Domain Generalization Guided by Gradient Signal to Noise Ratio of
Parameters [69.24377241408851]
Overfitting to the source domain is a common issue in gradient-based training of deep neural networks.
We propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network's parameters.
arXiv Detail & Related papers (2023-10-11T10:21:34Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Semantic Self-adaptation: Enhancing Generalization with a Single Sample [45.111358665370524]
We propose a self-adaptive approach for semantic segmentation.
It fine-tunes the parameters of convolutional layers to the input image using consistency regularization.
Our empirical study suggests that self-adaptation may complement the established practice of model regularization at training time.
arXiv Detail & Related papers (2022-08-10T12:29:01Z) - Panini-Net: GAN Prior Based Degradation-Aware Feature Interpolation for
Face Restoration [4.244692655670362]
Panini-Net is a degradation-aware feature network for face restoration.
It learns the abstract representations to distinguish various degradations.
It achieves state-of-the-art performance for multi-degradation face restoration and face super-resolution.
arXiv Detail & Related papers (2022-03-16T07:41:07Z) - PLACE dropout: A Progressive Layer-wise and Channel-wise Dropout for
Domain Generalization [29.824723021053565]
Domain generalization (DG) aims to learn a generic model from multiple observed source domains.
The major challenge in DG is that the model inevitably faces a severe overfitting issue due to the domain gap between source and target domains.
We develop a novel layer-wise and channel-wise dropout for DG, which randomly selects one layer and then randomly selects its channels to conduct dropout.
arXiv Detail & Related papers (2021-12-07T13:23:52Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Rethinking Skip Connection with Layer Normalization in Transformers and
ResNets [49.87919454950763]
Skip connection is a widely-used technique to improve the performance of deep neural networks.
In this work, we investigate how the scale factors in the effectiveness of the skip connection.
arXiv Detail & Related papers (2021-05-15T11:44:49Z) - ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning
of Deep Neural Networks [2.8292841621378844]
We introduce the concept of adaptive sharpness which is scale-invariant and propose the corresponding generalization bound.
We suggest a novel learning method, adaptive sharpness-aware minimization (ASAM), utilizing the proposed generalization bound.
Experimental results in various benchmark datasets show that ASAM contributes to significant improvement of model generalization performance.
arXiv Detail & Related papers (2021-02-23T10:26:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.