論文の概要: Flow-Based Policy for Online Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2506.12811v1
- Date: Sun, 15 Jun 2025 10:53:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.901897
- Title: Flow-Based Policy for Online Reinforcement Learning
- Title(参考訳): オンライン強化学習のためのフローベース政策
- Authors: Lei Lv, Yunfei Li, Yu Luo, Fuchun Sun, Tao Kong, Jiafeng Xu, Xiao Ma,
- Abstract要約: FlowRLは、フローベースのポリシー表現とWasserstein-2正規化最適化を統合する、オンライン強化学習のためのフレームワークである。
オンライン強化学習ベンチマークにおいて,FlowRLが競争力を発揮することを示す。
- 参考スコア(独自算出の注目度): 34.86742824686496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present \textbf{FlowRL}, a novel framework for online reinforcement learning that integrates flow-based policy representation with Wasserstein-2-regularized optimization. We argue that in addition to training signals, enhancing the expressiveness of the policy class is crucial for the performance gains in RL. Flow-based generative models offer such potential, excelling at capturing complex, multimodal action distributions. However, their direct application in online RL is challenging due to a fundamental objective mismatch: standard flow training optimizes for static data imitation, while RL requires value-based policy optimization through a dynamic buffer, leading to difficult optimization landscapes. FlowRL first models policies via a state-dependent velocity field, generating actions through deterministic ODE integration from noise. We derive a constrained policy search objective that jointly maximizes Q through the flow policy while bounding the Wasserstein-2 distance to a behavior-optimal policy implicitly derived from the replay buffer. This formulation effectively aligns the flow optimization with the RL objective, enabling efficient and value-aware policy learning despite the complexity of the policy class. Empirical evaluations on DMControl and Humanoidbench demonstrate that FlowRL achieves competitive performance in online reinforcement learning benchmarks.
- Abstract(参考訳): We present \textbf{FlowRL}, a novel framework for online reinforcement learning which integrates flow-based policy representation with Wasserstein-2-regularized optimization。
我々は、学習信号に加えて、ポリシークラスの表現力を高めることが、RLの性能向上に不可欠であると主張している。
フローベースの生成モデルはそのような可能性を提供し、複雑なマルチモーダルな行動分布を捉えるのに優れている。
標準的なフロートレーニングは静的データの模倣を最適化するが、RLは動的バッファを通じて値ベースのポリシー最適化を必要とするため、最適化の難しさをもたらす。
FlowRLはまず、状態依存の速度場を通じてポリシーをモデル化し、ノイズから決定論的ODE統合を通じてアクションを生成する。
本稿では,リプレイバッファから暗黙的に派生した行動最適化ポリシーにワッサースタイン2距離を拘束しながら,フローポリシを通じてQを最大化する制約付きポリシー探索目標を導出する。
この定式化は、フロー最適化をRL目標と効果的に整合させ、ポリシークラスの複雑さにもかかわらず、効率的で価値に配慮したポリシー学習を可能にする。
DMControlとHuoidbenchに関する実証的な評価は、FlowRLがオンライン強化学習ベンチマークで競合性能を達成することを示した。
関連論文リスト
- Online Reward-Weighted Fine-Tuning of Flow Matching with Wasserstein Regularization [14.320131946691268]
本稿では,フローベース生成モデルのための,使いやすく,理論的に健全な微調整法を提案する。
提案手法は,オンライン報酬重み付け機構を導入することにより,データ多様体内の高次領域の優先順位付けをモデルに導出する。
本手法は,報酬と多様性のトレードオフを制御可能とし,最適な政策収束を実現する。
論文 参考訳(メタデータ) (2025-02-09T22:45:15Z) - Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone [72.17534881026995]
ポリシーに依存しないRL(PA-RL)と呼ばれるオフラインおよびオンラインの微調整手法を開発する。
オンラインRLファインチューニングアルゴリズムであるCal-QLを用いて、7BジェネラリストロボットポリシーであるOpenVLAのファインチューニングに成功した最初の結果を示す。
論文 参考訳(メタデータ) (2024-12-09T17:28:03Z) - Offline-Boosted Actor-Critic: Adaptively Blending Optimal Historical Behaviors in Deep Off-Policy RL [42.57662196581823]
オフ・ポリティクス強化学習(RL)は、多くの複雑な現実世界のタスクに取り組むことで顕著な成功を収めた。
既存のRLアルゴリズムの多くは、リプレイバッファ内の情報を最大限活用できない。
OBAC(Offline-Boosted Actor-Critic)は、モデルのないオンラインRLフレームワークで、優れたオフラインポリシーをエレガントに識別する。
論文 参考訳(メタデータ) (2024-05-28T18:38:46Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
拡散モデルは強化学習(Reinforcement Learning, RL)において、その強力な表現力と多モード性に対して広く注目を集めている。
モデルなし拡散に基づくオンラインRLアルゴリズムQ-weighted Variational Policy Optimization (QVPO)を提案する。
具体的には、ある条件下でのオンラインRLにおける政策目標の厳密な下限を証明できるQ重み付き変動損失を導入する。
また,オンラインインタラクションにおける拡散ポリシのばらつきを低減し,サンプル効率を向上させるための効率的な行動ポリシーも開発している。
論文 参考訳(メタデータ) (2024-05-25T10:45:46Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
オフライン強化学習(RL)は、以前に収集した静的データセットを使って最適なポリシーを学ぶことを目的としている。
本稿では,条件付き拡散モデルを用いたディフュージョンQ-ラーニング(Diffusion-QL)を提案する。
本手法はD4RLベンチマークタスクの大部分において最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-08-12T09:54:11Z) - Model-Based Offline Meta-Reinforcement Learning with Regularization [63.35040401948943]
オフラインのMeta-RLは、これらの課題に対処するための有望なアプローチとして現れています。
MerPOは、効率的なタスク構造推論と情報的メタ政治のためのメタモデルを学ぶ。
我々は,MerPOが行動政策とメタ政治の両方に対して,保証された改善を提供することを示す。
論文 参考訳(メタデータ) (2022-02-07T04:15:20Z) - Pareto Deterministic Policy Gradients and Its Application in 5G Massive
MIMO Networks [32.099949375036495]
我々は,強化学習(RL)アプローチを用いて,セルロードバランスとネットワークスループットを協調的に最適化することを検討する。
RLの背景にある理論的根拠は、ユーザモビリティとネットワークのダイナミクスを解析的にモデル化することの難しさを回避することである。
この共同最適化を実現するために、ベクトル報酬をRL値ネットワークに統合し、別々のポリシーネットワークを介してRLアクションを実行する。
論文 参考訳(メタデータ) (2020-12-02T15:35:35Z) - Mixed Reinforcement Learning with Additive Stochastic Uncertainty [19.229447330293546]
強化学習 (Reinforcement Learning, RL) 法は、しばしば最適なポリシーを探索するための大規模な探索データに依存し、サンプリング効率の低下に悩まされる。
本稿では, 環境力学の2つの表現を同時に利用して, 最適ポリシーを探索する混合RLアルゴリズムを提案する。
混合RLの有効性は、非アフィン非線形系の典型的な最適制御問題によって実証される。
論文 参考訳(メタデータ) (2020-02-28T08:02:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。