ComplexBench-Edit: Benchmarking Complex Instruction-Driven Image Editing via Compositional Dependencies
- URL: http://arxiv.org/abs/2506.12830v1
- Date: Sun, 15 Jun 2025 12:22:55 GMT
- Title: ComplexBench-Edit: Benchmarking Complex Instruction-Driven Image Editing via Compositional Dependencies
- Authors: Chenglin Wang, Yucheng Zhou, Qianning Wang, Zhe Wang, Kai Zhang,
- Abstract summary: Real-world scenarios often involve complex, multi-step instructions, particularly chain'' instructions where operations are interdependent.<n>Current models struggle with these intricate directives, and existing benchmarks inadequately evaluate such capabilities.<n>We introduce ComplexBench-Edit, a novel benchmark designed to systematically assess model performance on complex, multi-instruction, and chain-dependent image editing tasks.
- Score: 13.525744033075785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-driven image editing has achieved remarkable success in following single instructions. However, real-world scenarios often involve complex, multi-step instructions, particularly ``chain'' instructions where operations are interdependent. Current models struggle with these intricate directives, and existing benchmarks inadequately evaluate such capabilities. Specifically, they often overlook multi-instruction and chain-instruction complexities, and common consistency metrics are flawed. To address this, we introduce ComplexBench-Edit, a novel benchmark designed to systematically assess model performance on complex, multi-instruction, and chain-dependent image editing tasks. ComplexBench-Edit also features a new vision consistency evaluation method that accurately assesses non-modified regions by excluding edited areas. Furthermore, we propose a simple yet powerful Chain-of-Thought (CoT)-based approach that significantly enhances the ability of existing models to follow complex instructions. Our extensive experiments demonstrate ComplexBench-Edit's efficacy in differentiating model capabilities and highlight the superior performance of our CoT-based method in handling complex edits. The data and code are released at https://github.com/llllly26/ComplexBench-Edit.
Related papers
- CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
We develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward.<n>It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types.<n>We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier.
arXiv Detail & Related papers (2025-08-05T17:55:24Z) - Image Editing As Programs with Diffusion Models [69.05164729625052]
We introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture.<n>IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations.<n>Our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions.
arXiv Detail & Related papers (2025-06-04T16:57:24Z) - CompBench: Benchmarking Complex Instruction-guided Image Editing [63.347846732450364]
CompBench is a large-scale benchmark for complex instruction-guided image editing.<n>We propose an MLLM-human collaborative framework with tailored task pipelines.<n>We propose an instruction decoupling strategy that disentangles editing intents into four key dimensions.
arXiv Detail & Related papers (2025-05-18T02:30:52Z) - $\texttt{Complex-Edit}$: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark [36.58090024531738]
We introduce $ttexttComplex-Edit$, a comprehensive benchmark designed to evaluate instruction-based image editing models.<n>We harness GPT-4o to automatically collect a diverse set of editing instructions at scale.<n>We introduce a suite of metrics to assess various aspects of editing performance, along with a VLM-based auto-evaluation pipeline.
arXiv Detail & Related papers (2025-04-17T17:51:59Z) - EpiCoder: Encompassing Diversity and Complexity in Code Generation [49.170195362149386]
Existing methods for code generation use code snippets as seed data.<n>We introduce a novel feature tree-based synthesis framework, which revolves around hierarchical code features.<n>Our framework provides precise control over the complexity of the generated code, enabling functionalities that range from function-level operations to multi-file scenarios.
arXiv Detail & Related papers (2025-01-08T18:58:15Z) - ComprehendEdit: A Comprehensive Dataset and Evaluation Framework for Multimodal Knowledge Editing [27.034072044001736]
Large multimodal language models (MLLMs) have revolutionized natural language processing and visual understanding.<n>Current knowledge editing evaluations are limited in scope and potentially biased.<n>We introduce ComprehendEdit, a comprehensive benchmark comprising eight diverse tasks from multiple datasets.
arXiv Detail & Related papers (2024-12-17T11:41:49Z) - Benchmarking Complex Instruction-Following with Multiple Constraints Composition [72.82640456309821]
How to evaluate the ability of complex instruction-following of large language models (LLMs) has become a critical research problem.
Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints.
We propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints.
arXiv Detail & Related papers (2024-07-04T14:50:45Z) - SmartEdit: Exploring Complex Instruction-based Image Editing with
Multimodal Large Language Models [91.22477798288003]
This paper introduces SmartEdit, a novel approach to instruction-based image editing.
It exploits Multimodal Large Language Models (MLLMs) to enhance their understanding and reasoning capabilities.
We show that a small amount of complex instruction editing data can effectively stimulate SmartEdit's editing capabilities for more complex instructions.
arXiv Detail & Related papers (2023-12-11T17:54:11Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.