Uncovering Social Network Activity Using Joint User and Topic Interaction
- URL: http://arxiv.org/abs/2506.12842v1
- Date: Sun, 15 Jun 2025 13:30:22 GMT
- Title: Uncovering Social Network Activity Using Joint User and Topic Interaction
- Authors: Gaspard Abel, Argyris Kalogeratos, Jean-Pierre Nadal, Julien Randon-Furling,
- Abstract summary: We introduce the Mixture of Interacting Cascades (MIC), a model of marked multidimensional Hawkes processes.<n>We emphasize on the interplay between information cascades and user activity, and use a mixture of temporal point processes to build a coupled user/cascade point process model.
- Score: 1.894423638201033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of online social platforms, such as social networks and social media, has drastically affected the way people apprehend the information flows to which they are exposed. In such platforms, various information cascades spreading among users is the main force creating complex dynamics of opinion formation, each user being characterized by their own behavior adoption mechanism. Moreover, the spread of multiple pieces of information or beliefs in a networked population is rarely uncorrelated. In this paper, we introduce the Mixture of Interacting Cascades (MIC), a model of marked multidimensional Hawkes processes with the capacity to model jointly non-trivial interaction between cascades and users. We emphasize on the interplay between information cascades and user activity, and use a mixture of temporal point processes to build a coupled user/cascade point process model. Experiments on synthetic and real data highlight the benefits of this approach and demonstrate that MIC achieves superior performance to existing methods in modeling the spread of information cascades. Finally, we demonstrate how MIC can provide, through its learned parameters, insightful bi-layered visualizations of real social network activity data.
Related papers
- InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction [72.50606292994341]
We propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style.<n>Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
arXiv Detail & Related papers (2024-11-15T00:20:36Z) - Characterizing User Archetypes and Discussions on Scored.co [0.6321194486116923]
We present a framework for characterizing nodes and hyperedges in social hypernetworks.
We focus on the understudied alt-right platform Scored.co.
Our findings highlight the importance of higher-order interactions in understanding social dynamics.
arXiv Detail & Related papers (2024-07-31T17:18:25Z) - MMoE: Enhancing Multimodal Models with Mixtures of Multimodal Interaction Experts [92.76662894585809]
We introduce an approach to enhance multimodal models, which we call Multimodal Mixtures of Experts (MMoE)
MMoE is able to be applied to various types of models to gain improvement.
arXiv Detail & Related papers (2023-11-16T05:31:21Z) - Two-stream Multi-level Dynamic Point Transformer for Two-person Interaction Recognition [45.0131792009999]
We propose a point cloud-based network named Two-stream Multi-level Dynamic Point Transformer for two-person interaction recognition.
Our model addresses the challenge of recognizing two-person interactions by incorporating local-region spatial information, appearance information, and motion information.
Our network outperforms state-of-the-art approaches in most standard evaluation settings.
arXiv Detail & Related papers (2023-07-22T03:51:32Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Sparsity-aware neural user behavior modeling in online interaction
platforms [2.4036844268502766]
We develop generalizable neural representation learning frameworks for user behavior modeling.
Our problem settings span transductive and inductive learning scenarios.
We leverage different facets of information reflecting user behavior to enable personalized inference at scale.
arXiv Detail & Related papers (2022-02-28T00:27:11Z) - Dynamic Representation Learning with Temporal Point Processes for
Higher-Order Interaction Forecasting [8.680676599607123]
This paper proposes a temporal point process model for hyperedge prediction to address these problems.
As far as our knowledge, this is the first work that uses the temporal point process to forecast hyperedges in dynamic networks.
arXiv Detail & Related papers (2021-12-19T14:24:37Z) - Information Interaction Profile of Choice Adoption [2.9972063833424216]
We introduce an efficient method to infer the entities interaction network and its evolution according to the temporal distance separating interacting entities.
The interaction profile allows characterizing the mechanisms of the interaction processes.
We show that the effect of a combination of exposures on a user is more than the sum of each exposure's independent effect--there is an interaction.
arXiv Detail & Related papers (2021-04-28T10:42:25Z) - Learning Asynchronous and Sparse Human-Object Interaction in Videos [56.73059840294019]
Asynchronous-Sparse Interaction Graph Networks (ASSIGN) is able to automatically detect the structure of interaction events associated with entities in a video scene.
ASSIGN is tested on human-object interaction recognition and shows superior performance in segmenting and labeling of human sub-activities and object affordances from raw videos.
arXiv Detail & Related papers (2021-03-03T23:43:55Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
arXiv Detail & Related papers (2020-02-05T11:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.