VFEFL: Privacy-Preserving Federated Learning against Malicious Clients via Verifiable Functional Encryption
- URL: http://arxiv.org/abs/2506.12846v2
- Date: Sat, 28 Jun 2025 09:23:38 GMT
- Title: VFEFL: Privacy-Preserving Federated Learning against Malicious Clients via Verifiable Functional Encryption
- Authors: Nina Cai, Jinguang Han, Weizhi Meng,
- Abstract summary: Federated learning is a promising distributed learning paradigm that enables collaborative model training without exposing local client data.<n>The distributed nature of federated learning makes it particularly vulnerable to attacks raised by malicious clients.<n>This paper proposes a privacy-preserving federated learning framework based on verifiable functional encryption.
- Score: 3.329039715890632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a promising distributed learning paradigm that enables collaborative model training without exposing local client data, thereby protect data privacy. However, it also brings new threats and challenges. The advancement of model inversion attacks has rendered the plaintext transmission of local models insecure, while the distributed nature of federated learning makes it particularly vulnerable to attacks raised by malicious clients. To protect data privacy and prevent malicious client attacks, this paper proposes a privacy-preserving federated learning framework based on verifiable functional encryption, without a non-colluding dual-server setup or additional trusted third-party. Specifically, we propose a novel decentralized verifiable functional encryption (DVFE) scheme that enables the verification of specific relationships over multi-dimensional ciphertexts. This scheme is formally treated, in terms of definition, security model and security proof. Furthermore, based on the proposed DVFE scheme, we design a privacy-preserving federated learning framework VFEFL that incorporates a novel robust aggregation rule to detect malicious clients, enabling the effective training of high-accuracy models under adversarial settings. Finally, we provide formal analysis and empirical evaluation of the proposed schemes. The results demonstrate that our approach achieves the desired privacy protection, robustness, verifiability and fidelity, while eliminating the reliance on non-colluding dual-server settings or trusted third parties required by existing methods.
Related papers
- Privacy-Preserving Federated Learning Scheme with Mitigating Model Poisoning Attacks: Vulnerabilities and Countermeasures [10.862166653863571]
We propose an enhanced privacy-preserving and Byzantine-robust federated learning scheme.<n>Our scheme guarantees privacy preservation and resilience against model poisoning attacks.
arXiv Detail & Related papers (2025-06-30T08:39:01Z) - Confidential Guardian: Cryptographically Prohibiting the Abuse of Model Abstention [65.47632669243657]
A dishonest institution can exploit mechanisms to discriminate or unjustly deny services under the guise of uncertainty.<n>We demonstrate the practicality of this threat by introducing an uncertainty-inducing attack called Mirage.<n>We propose Confidential Guardian, a framework that analyzes calibration metrics on a reference dataset to detect artificially suppressed confidence.
arXiv Detail & Related papers (2025-05-29T19:47:50Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - RLSA-PFL: Robust Lightweight Secure Aggregation with Model Inconsistency Detection in Privacy-Preserving Federated Learning [12.804623314091508]
Federated Learning (FL) allows users to collaboratively train a global machine learning model by sharing local model only, without exposing their private data to a central server.<n>Study have revealed privacy vulnerabilities in FL, where adversaries can potentially infer sensitive information from the shared model parameters.<n>We present an efficient masking-based secure aggregation scheme utilizing lightweight cryptographic primitives to privacy risks.
arXiv Detail & Related papers (2025-02-13T06:01:09Z) - TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning [16.898842295300067]
Federated learning is a computing paradigm that enhances privacy by enabling multiple parties to collaboratively train a machine learning model without revealing personal data.<n>Traditional federated learning platforms are unable to ensure privacy due to privacy leaks caused by the interchange of gradients.<n>This paper proposes TAPFed, an approach for achieving privacy-preserving federated learning in the context of multiple decentralized aggregators with malicious actors.
arXiv Detail & Related papers (2025-01-09T08:24:10Z) - Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
We propose an architecture for blockchain-based PAISs aimed at preserving both confidentiality and transparency.<n>Smart contracts enact, enforce and store public interactions, while attribute-based encryption techniques are adopted to specify access grants to confidential information.
arXiv Detail & Related papers (2024-12-07T20:18:36Z) - Certifiably Byzantine-Robust Federated Conformal Prediction [49.23374238798428]
We introduce a novel framework Rob-FCP, which executes robust federated conformal prediction effectively countering malicious clients.
We empirically demonstrate the robustness of Rob-FCP against diverse proportions of malicious clients under a variety of Byzantine attacks.
arXiv Detail & Related papers (2024-06-04T04:43:30Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
We investigate the privacy implications of SecAgg in federated learning.
We show that SecAgg offers weak privacy against membership inference attacks even in a single training round.
Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection.
arXiv Detail & Related papers (2024-03-26T15:07:58Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users [19.209830150036254]
federated learning (FL) technique was developed to mitigate data privacy issues in the traditional machine learning paradigm.
Next-generation FL architectures proposed encryption and anonymization techniques to protect the model updates from the server.
This paper proposes a novel FL algorithm based on a fully homomorphic encryption (FHE) scheme.
arXiv Detail & Related papers (2023-06-08T11:20:00Z) - FedSOV: Federated Model Secure Ownership Verification with Unforgeable
Signature [60.99054146321459]
Federated learning allows multiple parties to collaborate in learning a global model without revealing private data.
We propose a cryptographic signature-based federated learning model ownership verification scheme named FedSOV.
arXiv Detail & Related papers (2023-05-10T12:10:02Z) - FedGT: Identification of Malicious Clients in Federated Learning with Secure Aggregation [69.75513501757628]
FedGT is a novel framework for identifying malicious clients in federated learning with secure aggregation.
We show that FedGT significantly outperforms the private robust aggregation approach based on the geometric median recently proposed by Pillutla et al.
arXiv Detail & Related papers (2023-05-09T14:54:59Z) - Collusion Resistant Federated Learning with Oblivious Distributed
Differential Privacy [4.951247283741297]
Privacy-preserving federated learning enables a population of distributed clients to jointly learn a shared model.
We present an efficient mechanism based on oblivious distributed differential privacy that is the first to protect against such client collusion.
We conclude with empirical analysis of the protocol's execution speed, learning accuracy, and privacy performance on two data sets.
arXiv Detail & Related papers (2022-02-20T19:52:53Z) - Preserving Privacy and Security in Federated Learning [21.241705771577116]
We develop a principle framework that offers both privacy guarantees for users and detection against poisoning attacks from them.
Our framework enables the central server to identify poisoned model updates without violating the privacy guarantees of secure aggregation.
arXiv Detail & Related papers (2022-02-07T18:40:38Z) - PRECAD: Privacy-Preserving and Robust Federated Learning via
Crypto-Aided Differential Privacy [14.678119872268198]
Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively by keeping their datasets local and only exchanging model updates.
Existing FL protocol designs have been shown to be vulnerable to attacks that aim to compromise data privacy and/or model robustness.
We develop a framework called PRECAD, which simultaneously achieves differential privacy (DP) and enhances robustness against model poisoning attacks with the help of cryptography.
arXiv Detail & Related papers (2021-10-22T04:08:42Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.