FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users
- URL: http://arxiv.org/abs/2306.05112v3
- Date: Sun, 06 Oct 2024 08:05:56 GMT
- Title: FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users
- Authors: Yogachandran Rahulamathavan, Charuka Herath, Xiaolan Liu, Sangarapillai Lambotharan, Carsten Maple,
- Abstract summary: federated learning (FL) technique was developed to mitigate data privacy issues in the traditional machine learning paradigm.
Next-generation FL architectures proposed encryption and anonymization techniques to protect the model updates from the server.
This paper proposes a novel FL algorithm based on a fully homomorphic encryption (FHE) scheme.
- Score: 19.209830150036254
- License:
- Abstract: The federated learning (FL) technique was developed to mitigate data privacy issues in the traditional machine learning paradigm. While FL ensures that a user's data always remain with the user, the gradients are shared with the centralized server to build the global model. This results in privacy leakage, where the server can infer private information from the shared gradients. To mitigate this flaw, the next-generation FL architectures proposed encryption and anonymization techniques to protect the model updates from the server. However, this approach creates other challenges, such as malicious users sharing false gradients. Since the gradients are encrypted, the server is unable to identify rogue users. To mitigate both attacks, this paper proposes a novel FL algorithm based on a fully homomorphic encryption (FHE) scheme. We develop a distributed multi-key additive homomorphic encryption scheme that supports model aggregation in FL. We also develop a novel aggregation scheme within the encrypted domain, utilizing users' non-poisoning rates, to effectively address data poisoning attacks while ensuring privacy is preserved by the proposed encryption scheme. Rigorous security, privacy, convergence, and experimental analyses have been provided to show that FheFL is novel, secure, and private, and achieves comparable accuracy at reasonable computational cost.
Related papers
- DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing [51.336015600778396]
Federated Learning (FL) has gained lots of traction recently, both in industry and academia.
In FL, a machine learning model is trained using data from various end-users arranged in committees across several rounds.
Since such data can often be sensitive, a primary challenge in FL is providing privacy while still retaining utility of the model.
arXiv Detail & Related papers (2024-10-21T16:25:14Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Byzantine-Resilient Secure Aggregation for Federated Learning Without Privacy Compromises [4.242342898338019]
Federated learning (FL) shows great promise in large scale machine learning, but brings new risks in terms of privacy and security.
We propose ByITFL, a novel scheme for FL that provides resilience against Byzantine users while keeping the users' data private from the federator and private from other users.
arXiv Detail & Related papers (2024-05-14T15:37:56Z) - SaFL: Sybil-aware Federated Learning with Application to Face
Recognition [13.914187113334222]
Federated Learning (FL) is a machine learning paradigm to conduct collaborative learning among clients on a joint model.
On the downside, FL raises security and privacy concerns that have just started to be studied.
This paper proposes a new defense method against poisoning attacks in FL called SaFL.
arXiv Detail & Related papers (2023-11-07T21:06:06Z) - Privacy-Preserving Federated Learning via System Immersion and Random
Matrix Encryption [4.258856853258348]
Federated learning (FL) has emerged as a privacy solution for collaborative distributed learning where clients train AI models directly on their devices instead of sharing their data with a centralized (potentially adversarial) server.
We propose a Privacy-Preserving Federated Learning (PPFL) framework built on the synergy of matrix encryption and system immersion tools from control theory.
We show that our algorithm provides the same level of accuracy and convergence rate as the standard FL with a negligible cost while revealing no information about clients' data.
arXiv Detail & Related papers (2022-04-05T21:28:59Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine
Learning [0.0]
We present BEAS, the first blockchain-based framework for N-party Federated Learning.
It provides strict privacy guarantees of training data using gradient pruning.
Anomaly detection protocols are used to minimize the risk of data-poisoning attacks.
We also define a novel protocol to prevent premature convergence in heterogeneous learning environments.
arXiv Detail & Related papers (2022-02-06T17:11:14Z) - Decepticons: Corrupted Transformers Breach Privacy in Federated Learning
for Language Models [58.631918656336005]
We propose a novel attack that reveals private user text by deploying malicious parameter vectors.
Unlike previous attacks on FL, the attack exploits characteristics of both the Transformer architecture and the token embedding.
arXiv Detail & Related papers (2022-01-29T22:38:21Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
This paper empirically demonstrates that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity.
We provide the convergence analysis of a differential private (DP) FedAvg algorithm and highlight the relationship between clipping bias and the distribution of the clients' updates.
arXiv Detail & Related papers (2021-06-25T14:47:19Z) - FedBoosting: Federated Learning with Gradient Protected Boosting for
Text Recognition [7.988454173034258]
Federated Learning (FL) framework allows learning a shared model collaboratively without data being centralized or shared among data owners.
We show in this paper that the generalization ability of the joint model is poor on Non-Independent and Non-Identically Distributed (Non-IID) data.
We propose a novel boosting algorithm for FL to address both the generalization and gradient leakage issues.
arXiv Detail & Related papers (2020-07-14T18:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.