Distributional Training Data Attribution
- URL: http://arxiv.org/abs/2506.12965v2
- Date: Fri, 20 Jun 2025 20:38:39 GMT
- Title: Distributional Training Data Attribution
- Authors: Bruno Mlodozeniec, Isaac Reid, Sam Power, David Krueger, Murat Erdogdu, Richard E. Turner, Roger Grosse,
- Abstract summary: We introduce distributional training data attribution (d-TDA) to predict how the distribution of model outputs depends upon the dataset.<n>We identify training examples that drastically change the distribution of some target measurement without necessarily changing the mean.<n>We also find that influence functions (IFs) emerge naturally from our distributional framework as the limit to unrolled differentiation.
- Score: 20.18145179467698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomness is an unavoidable part of training deep learning models, yet something that traditional training data attribution algorithms fail to rigorously account for. They ignore the fact that, due to stochasticity in the initialisation and batching, training on the same dataset can yield different models. In this paper, we address this shortcoming through introducing distributional training data attribution (d-TDA), the goal of which is to predict how the distribution of model outputs (over training runs) depends upon the dataset. We demonstrate the practical significance of d-TDA in experiments, e.g. by identifying training examples that drastically change the distribution of some target measurement without necessarily changing the mean. Intriguingly, we also find that influence functions (IFs), a popular but poorly-understood data attribution tool, emerge naturally from our distributional framework as the limit to unrolled differentiation; without requiring restrictive convexity assumptions. This provides a new mathematical motivation for their efficacy in deep learning, and helps to characterise their limitations.
Related papers
- Robust training of implicit generative models for multivariate and heavy-tailed distributions with an invariant statistical loss [0.4249842620609682]
We build on the textitinvariant statistical loss (ISL) method introduced in citede2024training.
We extend it to handle heavy-tailed and multivariate data distributions.
We assess its performance in generative generative modeling and explore its potential as a pretraining technique for generative adversarial networks (GANs)
arXiv Detail & Related papers (2024-10-29T10:27:50Z) - Ask Your Distribution Shift if Pre-Training is Right for You [67.90850628695563]
In practice, fine-tuning a pre-trained model improves robustness significantly in some cases but not at all in others.<n>We focus on two possible failure modes of models under distribution shift: poor extrapolation and biases in the training data.<n>Our study suggests that, as a rule of thumb, pre-training can help mitigate poor extrapolation but not dataset biases.
arXiv Detail & Related papers (2024-02-29T23:46:28Z) - Mixture Data for Training Cannot Ensure Out-of-distribution Generalization [21.801115344132114]
We show that increasing the size of training data does not always lead to a reduction in the test generalization error.
In this work, we quantitatively redefine OOD data as those situated outside the convex hull of mixed training data.
Our proof of the new risk bound agrees that the efficacy of well-trained models can be guaranteed for unseen data.
arXiv Detail & Related papers (2023-12-25T11:00:38Z) - Preserving Fairness in AI under Domain Shift [15.820660013260584]
Existing algorithms for ensuring fairness in AI use a single-shot training strategy.
We develop an algorithm to adapt a fair model to remain fair under domain shift.
arXiv Detail & Related papers (2023-01-29T06:13:40Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
We propose D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data.
We show how D-BAT naturally emerges from the notion of generalized discrepancy.
arXiv Detail & Related papers (2022-02-09T12:03:02Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
We introduce a novel debiasing method called confidence regularization.
It discourages models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples.
We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets.
arXiv Detail & Related papers (2020-05-01T11:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.