Condition Monitoring with Machine Learning: A Data-Driven Framework for Quantifying Wind Turbine Energy Loss
- URL: http://arxiv.org/abs/2506.13012v1
- Date: Mon, 16 Jun 2025 00:44:54 GMT
- Title: Condition Monitoring with Machine Learning: A Data-Driven Framework for Quantifying Wind Turbine Energy Loss
- Authors: Emil Marcus Buchberg, Kent Vugs Nielsen,
- Abstract summary: This study introduces an advanced, scalable machine learning framework for condition monitoring of wind turbines.<n>The framework effectively isolates normal turbine behavior through rigorous preprocessing, incorporating domain-specific rules and anomaly detection filters.<n>The data preprocessing methods resulted in significant data reduction, retaining on average 31% of the original SCADA data per wind farm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wind energy significantly contributes to the global shift towards renewable energy, yet operational challenges, such as Leading-Edge Erosion on wind turbine blades, notably reduce energy output. This study introduces an advanced, scalable machine learning framework for condition monitoring of wind turbines, specifically targeting improved detection of anomalies using Supervisory Control and Data Acquisition data. The framework effectively isolates normal turbine behavior through rigorous preprocessing, incorporating domain-specific rules and anomaly detection filters, including Gaussian Mixture Models and a predictive power score. The data cleaning and feature selection process enables identification of deviations indicative of performance degradation, facilitating estimates of annual energy production losses. The data preprocessing methods resulted in significant data reduction, retaining on average 31% of the original SCADA data per wind farm. Notably, 24 out of 35 turbines exhibited clear performance declines. At the same time, seven improved, and four showed no significant changes when employing the power curve feature set, which consisted of wind speed and ambient temperature. Models such as Random Forest, XGBoost, and KNN consistently captured subtle but persistent declines in turbine performance. The developed framework provides a novel approach to existing condition monitoring methodologies by isolating normal operational data and estimating annual energy loss, which can be a key part in reducing maintenance expenditures and mitigating economic impacts from turbine downtime.
Related papers
- Inter-turbine Modelling of Wind-Farm Power using Multi-task Learning [0.0]
This work first introduces a probabilistic regression model for predicting wind-turbine power, which adjusts for wake effects learnt from data.<n> Spatial correlations in the learned model parameters for different tasks are then leveraged in a hierarchical Bayesian model to develop a "metamodel"<n>The results show that the metamodel is able to outperform a series of benchmark models, and demonstrates a novel strategy for making efficient use of data for inference in populations of structures.
arXiv Detail & Related papers (2025-02-20T13:01:07Z) - Barely-Visible Surface Crack Detection for Wind Turbine Sustainability [0.0]
We introduce a novel dataset of barely-visible hairline cracks collected from numerous wind turbine inspections.
To prove the efficacy of our dataset, we detail our end-to-end deployed turbine crack detection pipeline.
arXiv Detail & Related papers (2024-07-09T19:03:48Z) - Bias correction of wind power forecasts with SCADA data and continuous
learning [0.0]
We present, evaluate, and compare four machine learning-based wind power forecasting models.
The models are evaluated on datasets from a wind park comprising 65 wind turbines.
arXiv Detail & Related papers (2024-02-21T16:31:45Z) - Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning
and Autoregression [70.78523583702209]
We study training instabilities of behavior cloning with deep neural networks.
We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards.
arXiv Detail & Related papers (2023-10-17T17:39:40Z) - Prediction of wind turbines power with physics-informed neural networks
and evidential uncertainty quantification [2.126171264016785]
We use physics-informed neural networks to reproduce historical data coming from 4 turbines in a wind farm.
The developed models for regression of the power, torque, and power coefficient showed great accuracy for both real data and physical equations governing the system.
arXiv Detail & Related papers (2023-07-27T07:58:38Z) - A real-time material breakage detection for offshore wind turbines based
on improved neural network algorithm [0.0]
This study introduces a novel approach leveraging an advanced version of the YOLOv8 object detection model.
We employ a dataset of 5,432 images from the Saemangeum offshore wind farm and a publicly available dataset.
The findings reveal a substantial enhancement in defect detection stability, marking a significant stride towards efficient turbine maintenance.
arXiv Detail & Related papers (2023-07-25T18:50:05Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - An XAI framework for robust and transparent data-driven wind turbine
power curve models [0.8547032097715571]
Wind turbine power curve models translate ambient conditions into turbine power output.
In recent years, increasingly complex machine learning methods have become state-of-the-art for this task.
We introduce an explainable artificial intelligence framework to investigate and validate strategies learned by data-driven power curve models.
arXiv Detail & Related papers (2023-04-19T17:37:58Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
Air turbulence forecasting can help airlines avoid hazardous turbulence, guide routes that keep passengers safe, maximize efficiency, reduce costs.
Traditional forecasting approaches rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions.
We propose a machine learning based turbulence forecasting system due to two challenges: (1) Complex-temporal correlations, and (2) scarcity, very limited turbulence labels can be obtained.
arXiv Detail & Related papers (2020-10-26T21:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.