Bias correction of wind power forecasts with SCADA data and continuous
learning
- URL: http://arxiv.org/abs/2402.13916v1
- Date: Wed, 21 Feb 2024 16:31:45 GMT
- Title: Bias correction of wind power forecasts with SCADA data and continuous
learning
- Authors: Stefan Jonas, Kevin Winter, Bernhard Brodbeck, Angela Meyer
- Abstract summary: We present, evaluate, and compare four machine learning-based wind power forecasting models.
The models are evaluated on datasets from a wind park comprising 65 wind turbines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wind energy plays a critical role in the transition towards renewable energy
sources. However, the uncertainty and variability of wind can impede its full
potential and the necessary growth of wind power capacity. To mitigate these
challenges, wind power forecasting methods are employed for applications in
power management, energy trading, or maintenance scheduling. In this work, we
present, evaluate, and compare four machine learning-based wind power
forecasting models. Our models correct and improve 48-hour forecasts extracted
from a numerical weather prediction (NWP) model. The models are evaluated on
datasets from a wind park comprising 65 wind turbines. The best improvement in
forecasting error and mean bias was achieved by a convolutional neural network,
reducing the average NRMSE down to 22%, coupled with a significant reduction in
mean bias, compared to a NRMSE of 35% from the strongly biased baseline model
using uncorrected NWP forecasts. Our findings further indicate that changes to
neural network architectures play a minor role in affecting the forecasting
performance, and that future research should rather investigate changes in the
model pipeline. Moreover, we introduce a continuous learning strategy, which is
shown to achieve the highest forecasting performance improvements when new data
is made available.
Related papers
- ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Prediction of wind turbines power with physics-informed neural networks
and evidential uncertainty quantification [2.126171264016785]
We use physics-informed neural networks to reproduce historical data coming from 4 turbines in a wind farm.
The developed models for regression of the power, torque, and power coefficient showed great accuracy for both real data and physical equations governing the system.
arXiv Detail & Related papers (2023-07-27T07:58:38Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - A novel automatic wind power prediction framework based on multi-time
scale and temporal attention mechanisms [6.120692237856329]
Wind power generation is characterized by volatility, intermittence, and randomness.
Traditional wind power forecasting systems primarily focus on ultra-short-term or short-term forecasts.
We propose an automatic framework capable of forecasting wind power across multi-time scale.
arXiv Detail & Related papers (2023-02-02T17:03:08Z) - Probabilistic forecasts of wind power generation in regions with complex
topography using deep learning methods: An Arctic case [3.3788638227700734]
This work presents concepts and approaches concerning probabilistic forecasts with deep learning.
Deep learning models are used to make probabilistic forecasts of day-ahead power generation from a wind power plant located in Northern Norway.
arXiv Detail & Related papers (2022-03-10T15:52:11Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks [0.0]
Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data.
The paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves.
arXiv Detail & Related papers (2021-08-22T17:46:36Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Short-term prediction of photovoltaic power generation using Gaussian
process regression [3.8386504037654534]
This paper focuses on evaluating predictions of the energy generated by PV systems in the United Kingdom.
The model is evaluated for short-term forecasts of 48 hours against three main factors.
We also compare very short-term forecasts in terms of cloud coverage within the prediction period and only initial cloud coverage as a predictor.
arXiv Detail & Related papers (2020-10-05T18:35:25Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.