Accelerating PDE-Constrained Optimization by the Derivative of Neural Operators
- URL: http://arxiv.org/abs/2506.13120v1
- Date: Mon, 16 Jun 2025 05:58:36 GMT
- Title: Accelerating PDE-Constrained Optimization by the Derivative of Neural Operators
- Authors: Ze Cheng, Zhuoyu Li, Xiaoqiang Wang, Jianing Huang, Zhizhou Zhang, Zhongkai Hao, Hang Su,
- Abstract summary: We propose a novel framework for gradient-based PDE-Constrained Optimization problems.<n>We employ a specialized training method for neural operators and enhance derivative learning within the neural operator.<n>Our experimental results demonstrate the effectiveness of our model in accurately learning operators and their derivatives.
- Score: 12.819245784606867
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: PDE-Constrained Optimization (PDECO) problems can be accelerated significantly by employing gradient-based methods with surrogate models like neural operators compared to traditional numerical solvers. However, this approach faces two key challenges: (1) **Data inefficiency**: Lack of efficient data sampling and effective training for neural operators, particularly for optimization purpose. (2) **Instability**: High risk of optimization derailment due to inaccurate neural operator predictions and gradients. To address these challenges, we propose a novel framework: (1) **Optimization-oriented training**: we leverage data from full steps of traditional optimization algorithms and employ a specialized training method for neural operators. (2) **Enhanced derivative learning**: We introduce a *Virtual-Fourier* layer to enhance derivative learning within the neural operator, a crucial aspect for gradient-based optimization. (3) **Hybrid optimization**: We implement a hybrid approach that integrates neural operators with numerical solvers, providing robust regularization for the optimization process. Our extensive experimental results demonstrate the effectiveness of our model in accurately learning operators and their derivatives. Furthermore, our hybrid optimization approach exhibits robust convergence.
Related papers
- Optimizers Qualitatively Alter Solutions And We Should Leverage This [62.662640460717476]
Deep Neural Networks (DNNs) can not guarantee convergence to a unique global minimum of the loss when using only local information, such as SGD.<n>We argue that the community should aim at understanding the biases of already existing methods, as well as aim to build new DNNs with the explicit intent of inducing certain properties of the solution.
arXiv Detail & Related papers (2025-07-16T13:33:31Z) - Training Neural ODEs Using Fully Discretized Simultaneous Optimization [2.290491821371513]
Training Neural Ordinary Differential Equations (Neural ODEs) requires solving differential equations at each epoch, leading to high computational costs.<n>In particular, we employ a collocation-based, fully discretized formulation and use IPOPT-a solver for large-scale nonlinear optimization.<n>Our results show significant potential for (collocation-based) simultaneous Neural ODE training pipelines.
arXiv Detail & Related papers (2025-02-21T18:10:26Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
It is proposed to upgrade piece-wise linear neural network models with physics informed knowledge for optimization problems with neural network models embedded.
For all cases, physics-informed trained neural network based optimal results are closer to global optimality.
arXiv Detail & Related papers (2023-02-02T10:14:54Z) - A Closer Look at Learned Optimization: Stability, Robustness, and
Inductive Biases [44.01339030872185]
Blackbox learneds often struggle with stability and generalization when applied to tasks unlike those in their meta-training set.
We investigate the inductive biases and stability properties of optimization algorithms, and apply the resulting insights to designing inductive biases for blackboxs.
We learn to a variety of neural network training tasks, where it outperforms the current state of the art learned.
arXiv Detail & Related papers (2022-09-22T17:47:21Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
Recent methods have significantly reduced the performance of Binary Neural Networks (BNNs)
guaranteeing the effective and efficient training of BNNs is an unsolved problem.
We propose a BAMSProd algorithm with a key observation that the convergence property of optimizing deep binary model is strongly related to the quantization errors.
arXiv Detail & Related papers (2020-09-29T06:12:32Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
Adjoint-based optimization methods are attractive for aerodynamic shape design.
They can become prohibitively expensive when multiple optimization problems are being solved.
We propose a machine learning enabled, surrogate-based framework that replaces the expensive adjoint solver.
arXiv Detail & Related papers (2020-08-15T15:09:21Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.