Dual Protection Ring: User Profiling Via Differential Privacy and Service Dissemination Through Private Information Retrieval
- URL: http://arxiv.org/abs/2506.13170v1
- Date: Mon, 16 Jun 2025 07:33:12 GMT
- Title: Dual Protection Ring: User Profiling Via Differential Privacy and Service Dissemination Through Private Information Retrieval
- Authors: Imdad Ullah, Najm Hassan, Tariq Ahamed Ahangar, Zawar Hussain Shah, Mehregan Mahdavi Andrew Levula,
- Abstract summary: We develop user profiles that contain sensitive private attributes and an equivalent profile based on differential privacy for evaluating personalised services.<n>We use different variants of private information retrieval (PIR) to retrieve personalised services against differentially private profiles.<n>Our experimental results show that the observed processing delays with different PIR schemes are similar to the current advertising systems.
- Score: 0.6990493129893112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User profiling is crucial in providing personalised services, as it relies on analysing user behaviour and preferences to deliver targeted services. This approach enhances user experience and promotes heightened engagement. Nevertheless, user profiling also gives rise to noteworthy privacy considerations due to the extensive tracking and monitoring of personal data, potentially leading to surveillance or identity theft. We propose a dual-ring protection mechanism to protect user privacy by examining various threats to user privacy, such as behavioural attacks, profiling fingerprinting and monitoring, profile perturbation, etc., both on the user and service provider sides. We develop user profiles that contain sensitive private attributes and an equivalent profile based on differential privacy for evaluating personalised services. We determine the entropy of the resultant profiles during each update to protect profiling attributes and invoke various processes, such as data evaporation, to artificially increase entropy or destroy private profiling attributes. Furthermore, we use different variants of private information retrieval (PIR) to retrieve personalised services against differentially private profiles. We implement critical components of the proposed model via a proof-of-concept mobile app to demonstrate its applicability over a specific case study of advertising services, which can be generalised to other services. Our experimental results show that the observed processing delays with different PIR schemes are similar to the current advertising systems.
Related papers
- PriveShield: Enhancing User Privacy Using Automatic Isolated Profiles in Browsers [3.9251831157293515]
PriveShield is a light-weight privacy mechanism that disrupts the information gathering cycle.<n>Our evaluation results show that our extension is effective in preventing retargeted ads in 91% of those scenarios.
arXiv Detail & Related papers (2025-01-03T20:29:33Z) - On the Differential Privacy and Interactivity of Privacy Sandbox Reports [78.85958224681858]
The Privacy Sandbox initiative from Google includes APIs for enabling privacy-preserving advertising functionalities.<n>We provide an abstract model for analyzing the privacy of these APIs and show that they satisfy a formal DP guarantee.
arXiv Detail & Related papers (2024-12-22T08:22:57Z) - Inference Privacy: Properties and Mechanisms [8.471466670802817]
Inference Privacy (IP) can allow a user to interact with a model while providing a rigorous privacy guarantee for the users' data at inference.<n>We present two types of mechanisms for achieving IP: namely, input perturbations and output perturbations which are customizable by the users.
arXiv Detail & Related papers (2024-11-27T20:47:28Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.<n>We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.<n>We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - PrivacyRestore: Privacy-Preserving Inference in Large Language Models via Privacy Removal and Restoration [20.05248442344211]
PrivacyRestore is a plug-and-play method to protect the privacy of user inputs during inference.<n>We create three datasets, covering medical and legal domains, to evaluate the effectiveness of PrivacyRestore.
arXiv Detail & Related papers (2024-06-03T14:57:39Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Randomized algorithms for precise measurement of differentially-private,
personalized recommendations [6.793345945003182]
We propose an algorithm for personalized recommendations that facilitates both precise and differentially-private measurement.
We conduct offline experiments to quantify how the proposed privacy-preserving algorithm affects key metrics related to user experience, advertiser value, and platform revenue.
arXiv Detail & Related papers (2023-08-07T17:34:58Z) - Privacy-Preserving Matrix Factorization for Recommendation Systems using
Gaussian Mechanism [2.84279467589473]
We propose a privacy-preserving recommendation system based on the differential privacy framework and matrix factorization.
As differential privacy is a powerful and robust mathematical framework for designing privacy-preserving machine learning algorithms, it is possible to prevent adversaries from extracting sensitive user information.
arXiv Detail & Related papers (2023-04-11T13:50:39Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
We investigate the impact of each input feature on the individual's privacy loss.
We experimentally evaluate our approach on queries over private databases.
We also explore our findings in the context of neural network training on synthetic data.
arXiv Detail & Related papers (2021-09-22T08:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.