AI-Facilitated Analysis of Abstracts and Conclusions: Flagging Unsubstantiated Claims and Ambiguous Pronouns
- URL: http://arxiv.org/abs/2506.13172v2
- Date: Tue, 17 Jun 2025 08:24:30 GMT
- Title: AI-Facilitated Analysis of Abstracts and Conclusions: Flagging Unsubstantiated Claims and Ambiguous Pronouns
- Authors: Evgeny Markhasin,
- Abstract summary: We present and evaluate a suite of proof-of-concept prompts designed to elicit human-like hierarchical reasoning.<n>The prompts target two non-trivial analytical tasks within academic summaries (abstracts and conclusions)<n>We conducted a systematic, multi-run evaluation on two models (Gemini Pro 2.5 Pro and ChatGPT Plus o3) under varied context conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present and evaluate a suite of proof-of-concept (PoC), structured workflow prompts designed to elicit human-like hierarchical reasoning while guiding Large Language Models (LLMs) in the high-level semantic and linguistic analysis of scholarly manuscripts. The prompts target two non-trivial analytical tasks within academic summaries (abstracts and conclusions): identifying unsubstantiated claims (informational integrity) and flagging semantically confusing ambiguous pronoun references (linguistic clarity). We conducted a systematic, multi-run evaluation on two frontier models (Gemini Pro 2.5 Pro and ChatGPT Plus o3) under varied context conditions. Our results for the informational integrity task reveal a significant divergence in model performance: while both models successfully identified an unsubstantiated head of a noun phrase (95% success), ChatGPT consistently failed (0% success) to identify an unsubstantiated adjectival modifier that Gemini correctly flagged (95% success), raising a question regarding the potential influence of the target's syntactic role. For the linguistic analysis task, both models performed well (80-90% success) with full manuscript context. Surprisingly, in a summary-only setting, Gemini's performance was substantially degraded, while ChatGPT achieved a perfect (100%) success rate. Our findings suggest that while structured prompting is a viable methodology for complex textual analysis, prompt performance may be highly dependent on the interplay between the model, task type, and context, highlighting the need for rigorous, model-specific testing.
Related papers
- A linguistically-motivated evaluation methodology for unraveling model's abilities in reading comprehension tasks [10.181408678232055]
We introduce an evaluation methodology for reading comprehension tasks based on the intuition that certain examples consistently yield lower scores regardless of model size or architecture.<n>We capitalize on semantic frame annotation for characterizing this complexity, and study seven complexity factors that may account for model's difficulty.
arXiv Detail & Related papers (2025-01-29T11:05:20Z) - Localizing Factual Inconsistencies in Attributable Text Generation [91.981439746404]
We introduce QASemConsistency, a new formalism for localizing factual inconsistencies in attributable text generation.
We first demonstrate the effectiveness of the QASemConsistency methodology for human annotation.
We then implement several methods for automatically detecting localized factual inconsistencies.
arXiv Detail & Related papers (2024-10-09T22:53:48Z) - Análise de ambiguidade linguĂstica em modelos de linguagem de grande escala (LLMs) [0.35069196259739965]
Linguistic ambiguity continues to represent a significant challenge for natural language processing (NLP) systems.
Inspired by the recent success of instructional models like ChatGPT and Gemini, this study aims to analyze and discuss linguistic ambiguity within these models.
arXiv Detail & Related papers (2024-04-25T14:45:07Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - SOUL: Towards Sentiment and Opinion Understanding of Language [96.74878032417054]
We propose a new task called Sentiment and Opinion Understanding of Language (SOUL)
SOUL aims to evaluate sentiment understanding through two subtasks: Review (RC) and Justification Generation (JG)
arXiv Detail & Related papers (2023-10-27T06:48:48Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
We examine the successes and limitations of the GPT-3, ChatGPT, and GPT-4 models in analysis of sentence meaning structure.
We find that models can reliably reproduce the basic format of AMR, and can often capture core event, argument, and modifier structure.
Overall, our findings indicate that these models out-of-the-box can capture aspects of semantic structure, but there remain key limitations in their ability to support fully accurate semantic analyses or parses.
arXiv Detail & Related papers (2023-10-26T21:47:59Z) - Towards Improving Faithfulness in Abstractive Summarization [37.19777407790153]
We propose a Faithfulness Enhanced Summarization model (FES) to improve fidelity in abstractive summarization.
Our model outperforms strong baselines in experiments on CNN/DM and XSum.
arXiv Detail & Related papers (2022-10-04T19:52:09Z) - Exploring Multi-Modal Representations for Ambiguity Detection &
Coreference Resolution in the SIMMC 2.0 Challenge [60.616313552585645]
We present models for effective Ambiguity Detection and Coreference Resolution in Conversational AI.
Specifically, we use TOD-BERT and LXMERT based models, compare them to a number of baselines and provide ablation experiments.
Our results show that (1) language models are able to exploit correlations in the data to detect ambiguity; and (2) unimodal coreference resolution models can avoid the need for a vision component.
arXiv Detail & Related papers (2022-02-25T12:10:02Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) were tested on a benchmark for the textitdynamic estimation of thematic fit
Our results show that TLMs can reach performances that are comparable to those achieved by SDM.
However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge.
arXiv Detail & Related papers (2021-07-22T20:52:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.