Localizing Factual Inconsistencies in Attributable Text Generation
- URL: http://arxiv.org/abs/2410.07473v1
- Date: Wed, 9 Oct 2024 22:53:48 GMT
- Title: Localizing Factual Inconsistencies in Attributable Text Generation
- Authors: Arie Cattan, Paul Roit, Shiyue Zhang, David Wan, Roee Aharoni, Idan Szpektor, Mohit Bansal, Ido Dagan,
- Abstract summary: We introduce QASemConsistency, a new formalism for localizing factual inconsistencies in attributable text generation.
We first demonstrate the effectiveness of the QASemConsistency methodology for human annotation.
We then implement several methods for automatically detecting localized factual inconsistencies.
- Score: 91.981439746404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been an increasing interest in detecting hallucinations in model-generated texts, both manually and automatically, at varying levels of granularity. However, most existing methods fail to precisely pinpoint the errors. In this work, we introduce QASemConsistency, a new formalism for localizing factual inconsistencies in attributable text generation, at a fine-grained level. Drawing inspiration from Neo-Davidsonian formal semantics, we propose decomposing the generated text into minimal predicate-argument level propositions, expressed as simple question-answer (QA) pairs, and assess whether each individual QA pair is supported by a trusted reference text. As each QA pair corresponds to a single semantic relation between a predicate and an argument, QASemConsistency effectively localizes the unsupported information. We first demonstrate the effectiveness of the QASemConsistency methodology for human annotation, by collecting crowdsourced annotations of granular consistency errors, while achieving a substantial inter-annotator agreement ($\kappa > 0.7)$. Then, we implement several methods for automatically detecting localized factual inconsistencies, with both supervised entailment models and open-source LLMs.
Related papers
- Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
This work proposes a novel two-stage consistency learning approach for retrieved information compression in retrieval-augmented language models.
The proposed method is empirically validated across multiple datasets, demonstrating notable enhancements in precision and efficiency for question-answering tasks.
arXiv Detail & Related papers (2024-06-04T12:43:23Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - CoheSentia: A Novel Benchmark of Incremental versus Holistic Assessment
of Coherence in Generated Texts [15.866519123942457]
We introduce sc CoheSentia, a novel benchmark of human-perceived coherence of automatically generated texts.
Our benchmark contains 500 automatically-generated and human-annotated paragraphs, each annotated in both methods.
Our analysis shows that the inter-annotator agreement in the incremental mode is higher than in the holistic alternative.
arXiv Detail & Related papers (2023-10-25T03:21:20Z) - Unsupervised Pretraining for Fact Verification by Language Model
Distillation [4.504050940874427]
We propose SFAVEL (Self-supervised Fact Verification via Language Model Distillation), a novel unsupervised pretraining framework.
It distils self-supervised features into high-quality claim-fact alignments without the need for annotations.
This is enabled by a novel contrastive loss function that encourages features to attain high-quality claim and evidence alignments.
arXiv Detail & Related papers (2023-09-28T15:53:44Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
We introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction.
The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses.
LLMs with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list.
arXiv Detail & Related papers (2023-09-27T14:44:10Z) - WeCheck: Strong Factual Consistency Checker via Weakly Supervised
Learning [40.5830891229718]
We propose a weakly supervised framework that aggregates multiple resources to train a precise and efficient factual metric, namely WeCheck.
Comprehensive experiments on a variety of tasks demonstrate the strong performance of WeCheck, which achieves a 3.4% absolute improvement over previous state-of-the-art methods on TRUE benchmark on average.
arXiv Detail & Related papers (2022-12-20T08:04:36Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-10-06T02:51:02Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
We propose a conditional variational autoencoder (HCVAE) for generating QA pairs given unstructured texts as contexts.
Our model obtains impressive performance gains over all baselines on both tasks, using only a fraction of data for training.
arXiv Detail & Related papers (2020-05-28T08:26:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.