Enhancing Large Language Models with Reliable Knowledge Graphs
- URL: http://arxiv.org/abs/2506.13178v1
- Date: Mon, 16 Jun 2025 07:43:18 GMT
- Title: Enhancing Large Language Models with Reliable Knowledge Graphs
- Authors: Qinggang Zhang,
- Abstract summary: Knowledge Graphs offer a promising solution to ground Large Language Models in verified knowledge.<n>Their potential remains constrained by inherent noise, incompleteness, and the complexity of integrating their rigid structure with the flexible reasoning of LLMs.<n>This thesis addresses these limitations through a cohesive framework that enhances LLMs by refining and leveraging reliable KGs.
- Score: 0.6345523830122166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities in text generation and understanding, yet their reliance on implicit, unstructured knowledge often leads to factual inaccuracies and limited interpretability. Knowledge Graphs (KGs), with their structured, relational representations, offer a promising solution to ground LLMs in verified knowledge. However, their potential remains constrained by inherent noise, incompleteness, and the complexity of integrating their rigid structure with the flexible reasoning of LLMs. This thesis presents a systematic framework to address these limitations, advancing the reliability of KGs and their synergistic integration with LLMs through five interconnected contributions. This thesis addresses these challenges through a cohesive framework that enhances LLMs by refining and leveraging reliable KGs. First, we introduce contrastive error detection, a structure-based method to identify incorrect facts in KGs. This approach is extended by an attribute-aware framework that unifies structural and semantic signals for error correction. Next, we propose an inductive completion model that further refines KGs by completing the missing relationships in evolving KGs. Building on these refined KGs, KnowGPT integrates structured graph reasoning into LLMs through dynamic prompting, improving factual grounding. These contributions form a systematic pipeline (from error detection to LLM integration), demonstrating that reliable KGs significantly enhance the robustness, interpretability, and adaptability of LLMs.
Related papers
- ClaimPKG: Enhancing Claim Verification via Pseudo-Subgraph Generation with Lightweight Specialized LLM [3.864321514889099]
ClaimPKG is an end-to-end framework that seamlessly integrates LLM reasoning with structured knowledge from knowledge graphs (KGs)<n>ClaimPKG achieves state-of-the-art performance, outperforming strong baselines in this research field by 9%-12% accuracy points across multiple categories.
arXiv Detail & Related papers (2025-05-28T16:34:14Z) - LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph [57.382255728234064]
Large Language Models (LLMs) have impressive capabilities in text understanding and zero-shot reasoning.<n> Knowledge Graphs (KGs) provide rich and reliable contextual information for the reasoning process of LLMs.<n>We propose a novel Lightweight and efficient Prompt learning-ReasOning Framework for KGQA (LightPROF)
arXiv Detail & Related papers (2025-04-04T03:03:47Z) - Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks.<n>This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain.
arXiv Detail & Related papers (2025-03-31T15:58:08Z) - Thinking with Knowledge Graphs: Enhancing LLM Reasoning Through Structured Data [0.9284740716447338]
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation.<n>Recent research has shown promising results in leveraging knowledge graphs (KGs) to enhance LLM performance.<n>We have developed different techniques that tightly integrate KG structures and semantics into LLM representations.
arXiv Detail & Related papers (2024-12-14T02:51:47Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA)
We present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs.
Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance.
arXiv Detail & Related papers (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [92.71304585906624]
Large language models (LLMs) struggle with faithful reasoning due to knowledge gaps and hallucinations.<n>We introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs.<n>GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
arXiv Detail & Related papers (2024-10-16T22:55:17Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Synergizing Knowledge Graphs with Large Language Models: A Comprehensive Review and Future Prospects [5.851598378610756]
This paper is a comprehensive dissection of the latest developments in integrating Knowledge Graphs with Large Language Models.
We introduce a unifying framework designed to elucidate and stimulate further exploration among scholars engaged in cognate disciplines.
arXiv Detail & Related papers (2024-07-26T02:39:30Z) - Combining Knowledge Graphs and Large Language Models [4.991122366385628]
Large language models (LLMs) show astonishing results in language understanding and generation.
They still show some disadvantages, such as hallucinations and lack of domain-specific knowledge.
These issues can be effectively mitigated by incorporating knowledge graphs (KGs)
This work collected 28 papers outlining methods for KG-powered LLMs, LLM-based KGs, and LLM-KG hybrid approaches.
arXiv Detail & Related papers (2024-07-09T05:42:53Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
Large Language Model Agents (LMAs) face issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts.
This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline to enhance the knowledge capabilities of LMAs.
Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content.
arXiv Detail & Related papers (2024-05-20T14:03:05Z) - Large Language Models Can Better Understand Knowledge Graphs Than We Thought [13.336418752729987]
We study how large language models (LLMs) process and interpret knowledge graphs (KGs)<n>At the literal level, we reveal LLMs' preferences for various input formats.<n>At the attention distribution level, we discuss the underlying mechanisms driving these preferences.
arXiv Detail & Related papers (2024-02-18T10:44:03Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
Large language models (LLMs) are making new waves in the field of natural language processing and artificial intelligence.
Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge.
arXiv Detail & Related papers (2023-06-14T07:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.