COME: Adding Scene-Centric Forecasting Control to Occupancy World Model
- URL: http://arxiv.org/abs/2506.13260v1
- Date: Mon, 16 Jun 2025 09:01:09 GMT
- Title: COME: Adding Scene-Centric Forecasting Control to Occupancy World Model
- Authors: Yining Shi, Kun Jiang, Qiang Meng, Ke Wang, Jiabao Wang, Wenchao Sun, Tuopu Wen, Mengmeng Yang, Diange Yang,
- Abstract summary: World models are critical for autonomous driving to simulate environmental dynamics and generate synthetic data.<n>Existing methods struggle to disentangle ego-vehicle motion (perspective shifts from scene evolvement)<n>We propose to separate environmental changes from ego-motion by leveraging the scene-centric coordinate systems.
- Score: 18.815436110557112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: World models are critical for autonomous driving to simulate environmental dynamics and generate synthetic data. Existing methods struggle to disentangle ego-vehicle motion (perspective shifts) from scene evolvement (agent interactions), leading to suboptimal predictions. Instead, we propose to separate environmental changes from ego-motion by leveraging the scene-centric coordinate systems. In this paper, we introduce COME: a framework that integrates scene-centric forecasting Control into the Occupancy world ModEl. Specifically, COME first generates ego-irrelevant, spatially consistent future features through a scene-centric prediction branch, which are then converted into scene condition using a tailored ControlNet. These condition features are subsequently injected into the occupancy world model, enabling more accurate and controllable future occupancy predictions. Experimental results on the nuScenes-Occ3D dataset show that COME achieves consistent and significant improvements over state-of-the-art (SOTA) methods across diverse configurations, including different input sources (ground-truth, camera-based, fusion-based occupancy) and prediction horizons (3s and 8s). For example, under the same settings, COME achieves 26.3% better mIoU metric than DOME and 23.7% better mIoU metric than UniScene. These results highlight the efficacy of disentangled representation learning in enhancing spatio-temporal prediction fidelity for world models. Code and videos will be available at https://github.com/synsin0/COME.
Related papers
- SceneAware: Scene-Constrained Pedestrian Trajectory Prediction with LLM-Guided Walkability [3.130722489512822]
SceneAware is a novel framework that explicitly incorporates scene understanding to enhance trajectory prediction accuracy.<n>We combine a Transformer-based trajectory encoder with the ViT-based scene encoder, capturing both temporal dynamics and spatial constraints.<n>Our analysis shows that the model performs consistently well across various types of pedestrian movement.
arXiv Detail & Related papers (2025-06-17T03:11:31Z) - Unified Human Localization and Trajectory Prediction with Monocular Vision [64.19384064365431]
MonoTransmotion is a Transformer-based framework that uses only a monocular camera to jointly solve localization and prediction tasks.<n>We show that by jointly training both tasks with our unified framework, our method is more robust in real-world scenarios made of noisy inputs.
arXiv Detail & Related papers (2025-03-05T14:18:39Z) - ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction [15.624698974735654]
ASTRA (A Scene-aware TRAnsformer-based model for trajectory prediction) is a light-weight pedestrian trajectory forecasting model.<n>We utilise a U-Net-based feature extractor, via its latent vector representation, to capture scene representations and a graph-aware transformer encoder for capturing social interactions.
arXiv Detail & Related papers (2025-01-16T23:28:30Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Self-supervised Multi-future Occupancy Forecasting for Autonomous Driving [45.886941596233974]
LiDAR-generated occupancy grid maps (L-OGMs) offer a robust bird's-eye view for the scene representation.<n>Our proposed framework, Latent Occupancy Prediction (LOPR), performs L-OGM prediction in the latent space of a generative architecture.
arXiv Detail & Related papers (2024-07-30T18:37:59Z) - AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
We present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ dataset challenge at CVPR 2024.
Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling.
Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth.
arXiv Detail & Related papers (2024-07-01T16:32:15Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.