Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
- URL: http://arxiv.org/abs/2506.13265v1
- Date: Mon, 16 Jun 2025 09:03:51 GMT
- Title: Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
- Authors: Rohit Mohan, Julia Hindel, Florian Drews, Claudius Gläser, Daniele Cattaneo, Abhinav Valada,
- Abstract summary: We propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework.<n>Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation.<n>During inference, we leverage uncertainty estimates to identify and segment unknown instances.
- Score: 12.264187139335307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
Related papers
- An Uncertainty-aware DETR Enhancement Framework for Object Detection [10.102900613370817]
We propose an uncertainty-aware enhancement framework for DETR-based object detectors.<n>We derive a Bayes Risk formulation to filter high-risk information and improve detection reliability.<n> Experiments on the COCO benchmark show that our method can be effectively integrated into existing DETR variants.
arXiv Detail & Related papers (2025-07-20T07:53:04Z) - Explainability through uncertainty: Trustworthy decision-making with neural networks [1.104960878651584]
Uncertainty is a key feature of any machine learning model.
It is particularly important in neural networks, which tend to be overconfident.
Uncertainty as XAI improves the model's trustworthiness in downstream decision-making tasks.
arXiv Detail & Related papers (2024-03-15T10:22:48Z) - Credible Teacher for Semi-Supervised Object Detection in Open Scene [106.25850299007674]
In Open Scene Semi-Supervised Object Detection (O-SSOD), unlabeled data may contain unknown objects not observed in the labeled data.
It is detrimental to the current methods that mainly rely on self-training, as more uncertainty leads to the lower localization and classification precision of pseudo labels.
We propose Credible Teacher, an end-to-end framework to prevent uncertain pseudo labels from misleading the model.
arXiv Detail & Related papers (2024-01-01T08:19:21Z) - Uncertainty Estimation in Instance Segmentation with Star-convex Shapes [4.197316670989004]
Deep neural network-based algorithms often exhibit incorrect predictions with unwarranted confidence levels.
Our study addresses the challenge of estimating spatial certainty with the location of instances with star- shapes.
Our study demonstrates that combining fractional certainty estimation over individual certainty scores is an effective strategy.
arXiv Detail & Related papers (2023-09-19T10:49:33Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Segmenting Known Objects and Unseen Unknowns without Prior Knowledge [86.46204148650328]
holistic segmentation aims to identify and separate objects of unseen, unknown categories into instances without any prior knowledge about them.
We tackle this new problem with U3HS, which finds unknowns as highly uncertain regions and clusters their corresponding instance-aware embeddings into individual objects.
Experiments on public data from MS, Cityscapes, and Lost&Found demonstrate the effectiveness of U3HS.
arXiv Detail & Related papers (2022-09-12T16:59:36Z) - A Study on Mitigating Hard Boundaries of Decision-Tree-based Uncertainty
Estimates for AI Models [0.0]
Uncertainty wrappers use a decision tree approach to cluster input quality related uncertainties, assigning inputs strictly to distinct uncertainty clusters.
Our objective is to replace this with an approach that mitigates hard decision boundaries while preserving interpretability, runtime complexity, and prediction performance.
arXiv Detail & Related papers (2022-01-10T10:29:12Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Probabilistic Deep Learning for Instance Segmentation [9.62543698736491]
We propose a generic method to obtain model-inherent uncertainty estimates within proposal-free instance segmentation models.
We evaluate our method on the BBBC010 C. elegans dataset, where it yields competitive performance.
arXiv Detail & Related papers (2020-08-24T19:51:48Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
There are several limitations of the existing uncertainty estimation methods for anchor-based object detection.
We propose a new localization uncertainty estimation method called UAD for anchor-free object detection.
Our method captures the uncertainty in four directions of box offsets that are homogeneous, so that it can tell which direction is uncertain.
arXiv Detail & Related papers (2020-06-28T13:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.