An Uncertainty-aware DETR Enhancement Framework for Object Detection
- URL: http://arxiv.org/abs/2507.14855v1
- Date: Sun, 20 Jul 2025 07:53:04 GMT
- Title: An Uncertainty-aware DETR Enhancement Framework for Object Detection
- Authors: Xingshu Chen, Sicheng Yu, Chong Cheng, Hao Wang, Ting Tian,
- Abstract summary: We propose an uncertainty-aware enhancement framework for DETR-based object detectors.<n>We derive a Bayes Risk formulation to filter high-risk information and improve detection reliability.<n> Experiments on the COCO benchmark show that our method can be effectively integrated into existing DETR variants.
- Score: 10.102900613370817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the problem of object detection with a focus on improving both the localization accuracy of bounding boxes and explicitly modeling prediction uncertainty. Conventional detectors rely on deterministic bounding box regression, ignoring uncertainty in predictions and limiting model robustness. In this paper, we propose an uncertainty-aware enhancement framework for DETR-based object detectors. We model bounding boxes as multivariate Gaussian distributions and incorporate the Gromov-Wasserstein distance into the loss function to better align the predicted and ground-truth distributions. Building on this, we derive a Bayes Risk formulation to filter high-risk information and improve detection reliability. We also propose a simple algorithm to quantify localization uncertainty via confidence intervals. Experiments on the COCO benchmark show that our method can be effectively integrated into existing DETR variants, enhancing their performance. We further extend our framework to leukocyte detection tasks, achieving state-of-the-art results on the LISC and WBCDD datasets. These results confirm the scalability of our framework across both general and domain-specific detection tasks. Code page: https://github.com/ParadiseforAndaChen/An-Uncertainty-aware-DETR-Enhancement-Framework-for-Object-De tection.
Related papers
- Gaussian Process Upper Confidence Bounds in Distributed Point Target Tracking over Wireless Sensor Networks [8.837529873076235]
This paper proposes a distributed Gaussian process (DGP) approach for point target tracking and derives upper confidence bounds (UCBs) of the state estimates.
A novel hybrid Bayesian filtering method is proposed to enhance the DGP approach by adopting a Poisson measurement likelihood model.
Numerical results demonstrate the tracking accuracy and robustness of the proposed approaches.
arXiv Detail & Related papers (2024-09-11T22:42:11Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Uncertainty-Aware Model Adaptation for Unsupervised Cross-Domain Object
Detection [12.807987076435928]
This work tackles the unsupervised cross-domain object detection problem.
It aims to generalize a pre-trained object detector to a new target domain without labels.
arXiv Detail & Related papers (2021-08-28T09:37:18Z) - Localization Uncertainty-Based Attention for Object Detection [8.154943252001848]
We propose a more efficient uncertainty-aware dense detector (UADET) that predicts four-directional localization uncertainties via Gaussian modeling.
Experiments using the MS COCO benchmark show that our UADET consistently surpasses baseline FCOS, and that our best model, ResNext-64x4d-101-DCN, obtains a single model, single-scale AP of 48.3% on COCO test-dev.
arXiv Detail & Related papers (2021-08-25T04:32:39Z) - Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
Detectors [8.029049649310213]
We introduce novel gradient-based uncertainty metrics and investigate them for different object detection architectures.
Experiments show significant improvements in true positive / false positive discrimination and prediction of intersection over union.
We also find improvement over Monte-Carlo dropout uncertainty metrics and further significant boosts by aggregating different sources of uncertainty metrics.
arXiv Detail & Related papers (2021-07-09T16:04:11Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.