AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy
- URL: http://arxiv.org/abs/2506.13284v1
- Date: Mon, 16 Jun 2025 09:27:48 GMT
- Title: AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy
- Authors: Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, Wei Ping,
- Abstract summary: We investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models.<n> scaling strategies yield notable improvements in reasoning performance.<n>Our AceReason-Nemotron-1.1 7B model significantly outperforms AceReason-Nemotron-1.0 and new state-of-the-art performance among Qwen2.5-7B-based reasoning models.
- Score: 48.30596996677882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models. We begin by curating the SFT training data through two scaling strategies: increasing the number of collected prompts and the number of generated responses per prompt. Both approaches yield notable improvements in reasoning performance, with scaling the number of prompts resulting in more substantial gains. We then explore the following questions regarding the synergy between SFT and RL: (i) Does a stronger SFT model consistently lead to better final performance after large-scale RL training? (ii) How can we determine an appropriate sampling temperature during RL training to effectively balance exploration and exploitation for a given SFT initialization? Our findings suggest that (i) holds true, provided effective RL training is conducted, particularly when the sampling temperature is carefully chosen to maintain the temperature-adjusted entropy around 0.3, a setting that strikes a good balance between exploration and exploitation. Notably, the performance gap between initial SFT models narrows significantly throughout the RL process. Leveraging a strong SFT foundation and insights into the synergistic interplay between SFT and RL, our AceReason-Nemotron-1.1 7B model significantly outperforms AceReason-Nemotron-1.0 and achieves new state-of-the-art performance among Qwen2.5-7B-based reasoning models on challenging math and code benchmarks, thereby demonstrating the effectiveness of our post-training recipe. We release the model and data at: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B
Related papers
- Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle [53.239242017802056]
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM)<n>However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing and Rollout Silencing.<n>We propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition.
arXiv Detail & Related papers (2025-08-07T17:53:47Z) - Scalpel vs. Hammer: GRPO Amplifies Existing Capabilities, SFT Replaces Them [25.324955028065887]
Two popular approaches are reinforcement learning (RL) and supervised fine-tuning (SFT)<n>We find that RL yields minor in-domain gains on maths and slight degradation on knowledge-intensive benchmarks like MMLU.<n>SFT exhibits greater updates and also affects mid-layers query more, leading us to hypothesise that this may have caused the out-of-domain degradation.
arXiv Detail & Related papers (2025-07-13T19:04:17Z) - The Synergy Dilemma of Long-CoT SFT and RL: Investigating Post-Training Techniques for Reasoning VLMs [66.17068546293487]
Large vision-language models (VLMs) increasingly adopt post-training techniques such as long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL) to elicit sophisticated reasoning.<n>We present a systematic investigation into the distinct roles and interplay of long-CoT SFT and RL across multiple multimodal reasoning benchmarks.<n>We find that SFT improves performance on difficult questions by in-depth, structured reasoning, but introduces verbosity and degrades performance on simpler ones.
arXiv Detail & Related papers (2025-07-10T09:05:49Z) - Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions [28.962415274754537]
Large language model (LLM) reasoning has shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL)<n>We introduce a novel training approach, textbfReLIFT (textbfReinforcement textbfL textbfInterleaved with Online textbfFine-textbfTuning)<n>In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternate
arXiv Detail & Related papers (2025-06-09T08:11:20Z) - How Much Backtracking is Enough? Exploring the Interplay of SFT and RL in Enhancing LLM Reasoning [6.92510069380188]
We investigate the dynamics between SFT and RL on eight reasoning tasks.<n>Short CoT sequences used in SFT as a warm-up do have moderate contribution to RL training, compared with cold-start RL.<n>We find that longer CoT with backtracks generally induce better and more stable RL training.
arXiv Detail & Related papers (2025-05-30T06:49:00Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z) - SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models [39.551767637896404]
This work revisits the dominant supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm for training Large Vision-Language Models (LVLMs)<n>We show that SFT can significantly undermine subsequent RL by inducing pseudo reasoning paths'' imitated from expert models.<n>We introduce VLAA-Thinking, a new multimodal dataset designed to support reasoning in LVLMs.
arXiv Detail & Related papers (2025-04-10T16:54:05Z) - OpenVLThinker: Complex Vision-Language Reasoning via Iterative SFT-RL Cycles [91.88062410741833]
We introduce OpenVLThinker, one of the first open-source large vision-language models (LVLMs) to exhibit sophisticated chain-of-thought reasoning.<n>We show that OpenVLThinker-7B consistently advances performance across six benchmarks demanding mathematical and general reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Unlock the Correlation between Supervised Fine-Tuning and Reinforcement Learning in Training Code Large Language Models [12.656574142412484]
We make an attempt to understand the correlation between supervised fine-tuning and reinforcement learning.<n>We find that both atomic and synthetic functions are indispensable for SFT's generalization.
arXiv Detail & Related papers (2024-06-14T03:39:01Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.