Scalpel vs. Hammer: GRPO Amplifies Existing Capabilities, SFT Replaces Them
- URL: http://arxiv.org/abs/2507.10616v2
- Date: Fri, 25 Jul 2025 11:09:53 GMT
- Title: Scalpel vs. Hammer: GRPO Amplifies Existing Capabilities, SFT Replaces Them
- Authors: Neel Rajani, Aryo Pradipta Gema, Seraphina Goldfarb-Tarrant, Ivan Titov,
- Abstract summary: Two popular approaches are reinforcement learning (RL) and supervised fine-tuning (SFT)<n>We find that RL yields minor in-domain gains on maths and slight degradation on knowledge-intensive benchmarks like MMLU.<n>SFT exhibits greater updates and also affects mid-layers query more, leading us to hypothesise that this may have caused the out-of-domain degradation.
- Score: 25.324955028065887
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Training large language models (LLMs) for reasoning via maths and code datasets has become a major new focus in LLM post-training. Two particularly popular approaches are reinforcement learning (RL) and supervised fine-tuning (SFT), but their training dynamics are poorly understood. We present a comparative analysis of RL and SFT on the same maths problems with the same model and similar hyperparameters. We find that RL yields minor in-domain gains on maths and slight degradation on knowledge-intensive benchmarks like MMLU, while both trends are more pronounced in SFT. We also analyse model parameters across checkpoints, observing that both algorithms modify query and key weights the most. Meanwhile, SFT exhibits greater updates and also affects mid-layer MLPs more, leading us to hypothesise that this may have caused the out-of-domain degradation. We therefore investigate whether freezing parts of the model during training can mitigate the reduced performance on knowledge-intensive benchmarks. However, our results are inconclusive, with benefits on GPQA:Diamond and degradation on other benchmarks. Taken together, our observations provide a preliminary indication for why RL amplifies existing capabilities, while SFT replaces old skills with new ones.
Related papers
- Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning [46.22610560773869]
We evaluate over 20 open-weight reasoning-tuned models across a broad suite of tasks.<n>We find that most models that succeed in math fail to transfer their gains to other domains.<n>Our results suggest a need to rethink standard post-training recipes.
arXiv Detail & Related papers (2025-07-01T05:23:05Z) - AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy [48.30596996677882]
We investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models.<n> scaling strategies yield notable improvements in reasoning performance.<n>Our AceReason-Nemotron-1.1 7B model significantly outperforms AceReason-Nemotron-1.0 and new state-of-the-art performance among Qwen2.5-7B-based reasoning models.
arXiv Detail & Related papers (2025-06-16T09:27:48Z) - Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions [28.962415274754537]
Large language model (LLM) reasoning has shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL)<n>We introduce a novel training approach, textbfReLIFT (textbfReinforcement textbfL textbfInterleaved with Online textbfFine-textbfTuning)<n>In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternate
arXiv Detail & Related papers (2025-06-09T08:11:20Z) - Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning [82.43575191712726]
We introduce a fine-grained analytic framework to dissect the impact ofReinforcement learning on reasoning.<n>Our framework specifically investigates key elements that have been hypothesized to benefit from RL training.
arXiv Detail & Related papers (2025-06-05T07:53:59Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models.<n>We present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch.
arXiv Detail & Related papers (2025-04-10T17:15:53Z) - SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models [39.551767637896404]
This work revisits the dominant supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm for training Large Vision-Language Models (LVLMs)<n>We show that SFT can significantly undermine subsequent RL by inducing pseudo reasoning paths'' imitated from expert models.<n>We introduce VLAA-Thinking, a new multimodal dataset designed to support reasoning in LVLMs.
arXiv Detail & Related papers (2025-04-10T16:54:05Z) - OpenVLThinker: Complex Vision-Language Reasoning via Iterative SFT-RL Cycles [91.88062410741833]
We introduce OpenVLThinker, one of the first open-source large vision-language models (LVLMs) to exhibit sophisticated chain-of-thought reasoning.<n>We show that OpenVLThinker-7B consistently advances performance across six benchmarks demanding mathematical and general reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Teaching Large Language Models to Reason with Reinforcement Learning [38.17625148525193]
Reinforcement Learning from Human Feedback (textbfRLHF) has emerged as a dominant approach for aligning LLM outputs with human preferences.
Inspired by the success of RLHF, we study the performance of multiple algorithms that learn from feedback.
arXiv Detail & Related papers (2024-03-07T16:36:29Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.