EAQuant: Enhancing Post-Training Quantization for MoE Models via Expert-Aware Optimization
- URL: http://arxiv.org/abs/2506.13329v2
- Date: Fri, 04 Jul 2025 08:24:28 GMT
- Title: EAQuant: Enhancing Post-Training Quantization for MoE Models via Expert-Aware Optimization
- Authors: Zhongqian Fu, Ning Ding, Kai Han, Xianzhi Yu, Xiaosong Li, Xinghao Chen, Yehui Tang, Yunhe Wang,
- Abstract summary: Mixture-of-Experts (MoE) models have emerged as a cornerstone of large-scale deep learning.<n>MoE models have inherent complexities that challenge conventional quantization techniques.<n>We propose EAQuant, a novel PTQ framework tailored for MoE architectures.
- Score: 46.40666108181214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture-of-Experts (MoE) models have emerged as a cornerstone of large-scale deep learning by efficiently distributing computation and enhancing performance. However, their unique architecture-characterized by sparse expert activation and dynamic routing mechanisms-introduces inherent complexities that challenge conventional quantization techniques. Existing post-training quantization (PTQ) methods struggle to address activation outliers, router consistency and sparse expert calibration, leading to significant performance degradation. To bridge this gap, we propose EAQuant, a novel PTQ framework tailored for MoE architectures. Our method systematically tackles these challenges through three key innovations: (1) expert-aware smoothing aggregation to suppress activation outliers and stabilize quantization, (2) router logits distribution alignment to preserve expert selection consistency post-quantization, and (3) expert-level calibration data balance to optimize sparsely activated experts. Extensive experiments across W4A4 and extreme W3A4 quantization configurations demonstrate that EAQuant significantly outperforms existing methods, achieving average score improvements of 1.15 - 2.28% across three diverse MoE architectures, with particularly pronounced gains in reasoning tasks and robust performance retention under aggressive quantization. By integrating these innovations, EAQuant establishes a new state-of-the-art for high-precision, efficient MoE model compression. Our code is available at https://github.com/darren-fzq1/EAQuant.
Related papers
- Advancing Expert Specialization for Better MoE [22.570561334474252]
Mixture-of-Experts (MoE) models enable efficient scaling of large language models (LLMs) by activating only a subset of experts per input.<n>We observe that the commonly used auxiliary load balancing loss often leads to expert overlap and overly uniform routing.<n>We propose a simple yet effective solution that introduces two complementary objectives.
arXiv Detail & Related papers (2025-05-28T13:09:47Z) - MoEQuant: Enhancing Quantization for Mixture-of-Experts Large Language Models via Expert-Balanced Sampling and Affinity Guidance [10.817003682434425]
Mixture-of-Experts (MoE) large language models (LLMs) leverage dynamic routing and sparse activation to enhance efficiency and scalability.<n>Post-training quantization (PTQ) encounters severe accuracy degradation and diminished performance when applied to MoE models.<n>This paper investigates the impact of MoE's sparse and dynamic characteristics on quantization.
arXiv Detail & Related papers (2025-05-02T08:51:55Z) - Automatic Joint Structured Pruning and Quantization for Efficient Neural Network Training and Compression [44.35542987414442]
Structured pruning and quantization are fundamental techniques used to reduce the size of deep neural networks (DNNs)<n>Applying these techniques jointly via co-optimization has the potential to produce smaller, high-quality models.<n>We present the framework GETA, which automatically and efficiently performs joint structured pruning and quantization-aware training on any DNNs.
arXiv Detail & Related papers (2025-02-23T16:28:18Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts [63.67734699877724]
MoE++ is a general and heterogeneous MoE framework that integrates both Feed-Forward Network(FFN) and zero-computation experts.
MoE++ achieves better performance while delivering 1.1-2.1x expert forward throughput compared to a vanilla MoE model of the same size.
arXiv Detail & Related papers (2024-10-09T18:01:27Z) - AdapMoE: Adaptive Sensitivity-based Expert Gating and Management for Efficient MoE Inference [13.263938935671646]
AdapMoE is an algorithm-system co-design framework for efficient MoE inference.
AdapMoE features adaptive expert gating and management to reduce the on-demand loading overheads.
We show AdapMoE consistently outperforms existing techniques, reducing the average number of activated experts by 25% and achieving a 1.35x speedup without degradation accuracy.
arXiv Detail & Related papers (2024-08-19T03:27:15Z) - Expert-Token Resonance MoE: Bidirectional Routing with Efficiency Affinity-Driven Active Selection [16.062265609569003]
Mixture-of-Experts (MoE) architectures have emerged as a paradigm-shifting approach for large language models (LLMs)<n>We propose a novel expert routing framework that incorporates: (1) An efficient routing mechanism with lightweight computation; (2) An adaptive bidirectional selection mechanism leveraging resonance between experts and tokens; and (3) A module that determines the lower bounds of expert capacity based on dynamic token distribution analysis.
arXiv Detail & Related papers (2024-05-24T02:50:44Z) - CBQ: Cross-Block Quantization for Large Language Models [66.82132832702895]
Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs.<n>We propose CBQ, a cross-block reconstruction-based PTQ method for LLMs.<n> CBQ employs a cross-block dependency using a reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation.
arXiv Detail & Related papers (2023-12-13T07:56:27Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
We present a novel MoE architecture based on matrix product operators (MPO) from quantum many-body physics.
With the decomposed MPO structure, we can reduce the parameters of the original MoE architecture.
Experiments on the three well-known downstream natural language datasets based on GPT2 show improved performance and efficiency in increasing model capacity.
arXiv Detail & Related papers (2022-03-02T13:44:49Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
We propose to combine Network Architecture Search methods with quantization to enjoy the merits of the two sides.
We first propose the joint training of architecture and quantization with a shared step size to acquire a large number of quantized models.
Then a bit-inheritance scheme is introduced to transfer the quantized models to the lower bit, which further reduces the time cost and improves the quantization accuracy.
arXiv Detail & Related papers (2020-10-09T03:52:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.