MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts
- URL: http://arxiv.org/abs/2410.07348v1
- Date: Wed, 9 Oct 2024 18:01:27 GMT
- Title: MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts
- Authors: Peng Jin, Bo Zhu, Li Yuan, Shuicheng Yan,
- Abstract summary: MoE++ is a general and heterogeneous MoE framework that integrates both Feed-Forward Network(FFN) and zero-computation experts.
MoE++ achieves better performance while delivering 1.1-2.1x expert forward throughput compared to a vanilla MoE model of the same size.
- Score: 63.67734699877724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we aim to simultaneously enhance the effectiveness and efficiency of Mixture-of-Experts (MoE) methods. To achieve this, we propose MoE++, a general and heterogeneous MoE framework that integrates both Feed-Forward Network~(FFN) and zero-computation experts. Specifically, we introduce three types of zero-computation experts: the zero expert, copy expert, and constant expert, which correspond to discard, skip, and replace operations, respectively. This design offers three key advantages: (i) Low Computing Overhead: Unlike the uniform mixing mechanism for all tokens within vanilla MoE, MoE++ allows each token to engage with a dynamic number of FFNs, be adjusted by constant vectors, or even skip the MoE layer entirely. (ii) High Performance: By enabling simple tokens to utilize fewer FFN experts, MoE++ allows more experts to focus on challenging tokens, thereby unlocking greater performance potential than vanilla MoE. (iii) Deployment Friendly: Given that zero-computation experts have negligible parameters, we can deploy all zero-computation experts on each GPU, eliminating the significant communication overhead and expert load imbalance associated with FFN experts distributed across different GPUs. Moreover, we leverage gating residuals, enabling each token to consider the pathway taken in the previous layer when selecting the appropriate experts. Extensive experimental results demonstrate that MoE++ achieves better performance while delivering 1.1-2.1x expert forward throughput compared to a vanilla MoE model of the same size, which lays a solid foundation for developing advanced and efficient MoE-related models.
Related papers
- HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts [41.83123857437985]
Training MoEs from scratch in a large-scale regime is prohibitively expensive.
We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming.
Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance.
arXiv Detail & Related papers (2024-08-15T17:19:12Z) - MoMa: Efficient Early-Fusion Pre-training with Mixture of Modality-Aware Experts [95.26323548734692]
MoMa is a modality-aware mixture-of-experts architecture for pre-training mixed-modal, early-fusion language models.
Under a 1-trillion-token training budget, the MoMa 1.4B model, featuring 4 text experts and 4 image experts, achieves impressive FLOPs savings.
arXiv Detail & Related papers (2024-07-31T17:46:51Z) - AdaMoE: Token-Adaptive Routing with Null Experts for Mixture-of-Experts Language Models [14.646419975663367]
We introduce AdaMoE to realize token-adaptive routing for MoE.
AdaMoE does not force each token to occupy a fixed number of null experts.
It can reduce average expert load (FLOPs) while achieving superior performance.
arXiv Detail & Related papers (2024-06-19T05:47:10Z) - Expert-Token Resonance: Redefining MoE Routing through Affinity-Driven Active Selection [16.539855450082946]
We introduce a novel framework that redefines MoE routing through affinity-driven active selection.
Our theoretical analysis demonstrates that this approach mitigates expert homogenization while enabling substantial capacity boundary reduction.
After supervised fine-tuning, it exhibits performance gains of 9.7% to 14.1% across GDAD, C-Eval, and TeleQnA benchmarks.
arXiv Detail & Related papers (2024-05-24T02:50:44Z) - Multilinear Mixture of Experts: Scalable Expert Specialization through Factorization [51.98792406392873]
Mixture of Experts (MoE) provides a powerful way to decompose dense layers into smaller, modular computations.
A major challenge lies in the computational cost of scaling the number of experts high enough to achieve fine-grained specialization.
We propose the Multilinear Mixture of Experts ($mu$MoE) layer to address this, focusing on vision models.
arXiv Detail & Related papers (2024-02-19T21:20:22Z) - Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy [84.11508381847929]
Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks.
We propose M-SMoE, which leverages routing statistics to guide expert merging.
Our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.
arXiv Detail & Related papers (2023-10-02T16:51:32Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.