Decompositional Reasoning for Graph Retrieval with Large Language Models
- URL: http://arxiv.org/abs/2506.13380v1
- Date: Mon, 16 Jun 2025 11:44:28 GMT
- Title: Decompositional Reasoning for Graph Retrieval with Large Language Models
- Authors: Valentin Six, Evan Dufraisse, Gaƫl de Chalendar,
- Abstract summary: Large Language Models (LLMs) excel at many NLP tasks, but struggle with multi-hop reasoning and factual consistency.<n>We propose a novel retrieval approach that integrates textual knowledge graphs into the LLM reasoning process via query decomposition.<n>Our method decomposes complex questions into sub-questions, retrieves relevant textual subgraphs, and composes a question-specific knowledge graph to guide answer generation.
- Score: 1.034893617526558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) excel at many NLP tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To tackle this problem, we propose a novel retrieval approach that integrates textual knowledge graphs into the LLM reasoning process via query decomposition. Our method decomposes complex questions into sub-questions, retrieves relevant textual subgraphs, and composes a question-specific knowledge graph to guide answer generation. For that, we use a weighted similarity function that focuses on both the complex question and the generated subquestions to extract a relevant subgraph, which allows efficient and precise retrieval for complex questions and improves the performance of LLMs on multi-hop QA tasks. This structured reasoning pipeline enhances factual grounding and interpretability while leveraging the generative strengths of LLMs. We evaluate our method on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
Related papers
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujica is a planner that decomposes questions into acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning.<n>MyGO is a novel reinforcement learning method that replaces traditional policy updates with gradient Likelihood Maximum Estimation.<n> Empirical results across multiple datasets demonstrate the effectiveness of MujicaMyGO in enhancing multi-hop QA performance.
arXiv Detail & Related papers (2025-05-20T18:33:03Z) - Pseudocode-Injection Magic: Enabling LLMs to Tackle Graph Computational Tasks [15.69049038121735]
Graph computational tasks are inherently challenging and often demand advanced algorithms for effective solutions.<n>Existing approaches are constrained by large language models' limited capability to comprehend complex graph structures.<n>We introduce a novel framework, PIE, which consists of three key steps: problem understanding, prompt design, and code generation.
arXiv Detail & Related papers (2025-01-23T15:04:22Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.<n>However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.<n>This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.<n>We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
Large Language Models (LLMs) are often challenged by generating erroneous or hallucinated responses.<n>We propose a unified framework, FiDeLiS, designed to improve the factuality of LLM responses by anchoring answers to verifiable reasoning steps retrieved from Knowledge Graphs.<n>Our method, as a training-free framework, not only improve the performance but also enhance the factuality and interpretability across different benchmarks.
arXiv Detail & Related papers (2024-05-22T17:56:53Z) - Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models [7.399563588835834]
Interactive-KBQA is a framework designed to generate logical forms through direct interaction with knowledge bases (KBs)<n>Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets.
arXiv Detail & Related papers (2024-02-23T06:32:18Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - keqing: knowledge-based question answering is a nature chain-of-thought
mentor of LLM [27.76205400533089]
Large language models (LLMs) have exhibited remarkable performance on various natural language processing (NLP) tasks, especially for question answering.
We present a novel framework to assist LLMs, such as ChatGPT, to retrieve question-related structured information on the knowledge graph.
The experimental results on KBQA datasets show that Keqing can achieve competitive performance and illustrate the logic of answering each question.
arXiv Detail & Related papers (2023-12-31T08:39:04Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
Large Language Models (LLMs) have shown strong capabilities in language understanding and can be used to solve this task.
Existing methods bypass this challenge by initially employing LLMs to generate drafts of logic forms without schema-specific details.
We propose a simple In-Context Understanding (ICSU) method that enables LLMs to directly understand schemas by leveraging in-context learning.
arXiv Detail & Related papers (2023-10-22T04:19:17Z) - Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph [29.447300472617826]
Think-on-Graph (ToG) is a new approach for external knowledge graphs (KG) in large language models (LLMs)
ToG iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results.
ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.
arXiv Detail & Related papers (2023-07-15T03:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.