論文の概要: Bi-directional Context-Enhanced Speech Large Language Models for Multilingual Conversational ASR
- arxiv url: http://arxiv.org/abs/2506.13396v1
- Date: Mon, 16 Jun 2025 12:03:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:48.295036
- Title: Bi-directional Context-Enhanced Speech Large Language Models for Multilingual Conversational ASR
- Title(参考訳): 多言語会話型ASRのための双方向文脈拡張音声大言語モデル
- Authors: Yizhou Peng, Hexin Liu, Eng Siong Chng,
- Abstract要約: 本稿では、多言語連続会話自動音声認識(ASR)を改善するために、言語固有の双方向コンテキストを音声大言語モデル(SLLM)に統合する。
トレーニング中の文字レベルのコンテキストマスキング戦略を提案する。これにより、コンテキストの一部がランダムに除去され、堅牢性が向上し、推論中に発生する可能性のある欠陥のある文字のエミュレートが向上する。
- 参考スコア(独自算出の注目度): 23.285609467633865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the integration of language-specific bi-directional context into a speech large language model (SLLM) to improve multilingual continuous conversational automatic speech recognition (ASR). We propose a character-level contextual masking strategy during training, which randomly removes portions of the context to enhance robustness and better emulate the flawed transcriptions that may occur during inference. For decoding, a two-stage pipeline is utilized: initial isolated segment decoding followed by context-aware re-decoding using neighboring hypotheses. Evaluated on the 1500-hour Multilingual Conversational Speech and Language Model (MLC-SLM) corpus covering eleven languages, our method achieves an 18% relative improvement compared to a strong baseline, outperforming even the model trained on 6000 hours of data for the MLC-SLM competition. These results underscore the significant benefit of incorporating contextual information in multilingual continuous conversational ASR.
- Abstract(参考訳): 本稿では,多言語連続会話自動音声認識(ASR)を改善するために,言語固有の双方向コンテキストを音声大言語モデル(SLLM)に統合する。
トレーニング中の文字レベルのコンテキストマスキング戦略を提案する。これにより、コンテキストの一部がランダムに除去され、堅牢性が向上し、推論中に発生する可能性のある欠陥のある文字のエミュレートが向上する。
復号化には、2段階のパイプラインが使用される: 最初の分離セグメント復号化と、隣接する仮説を用いたコンテキスト認識の復号化。
11言語を対象とした1500時間多言語会話音声・言語モデル(MLC-SLM)コーパスの評価を行い,MLC-SLMコンペティションの6000時間データを用いたモデルにおいても,強いベースラインに比べて18%向上した。
これらの結果は,多言語連続会話型ASRにおける文脈情報の導入による重要なメリットを裏付けるものである。
関連論文リスト
- Zero-resource Speech Translation and Recognition with LLMs [38.11535502039386]
我々は,ペア音声テキストデータを見たことのない言語において,多言語大言語モデル(LLM)を用いてSTとASRを実行することを提案する。
我々は、事前訓練された多言語音声エンコーダ、多言語LLM、およびLLMのトークン埋め込み空間に音声表現をマッピングする軽量適応モジュールを用いて、これを実現する。
論文 参考訳(メタデータ) (2024-12-24T17:37:11Z) - Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
最も先進的なASRモデルの1つであるWhisperは99の言語を効果的に扱う。
しかし、ウィスパーは未確認の言語と戦っているが、それらは事前訓練には含まれていない。
本研究では,これらの関係を利用して未知言語上でのASR性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-12-21T04:05:43Z) - CLASP: Contrastive Language-Speech Pretraining for Multilingual Multimodal Information Retrieval [0.9023847175654603]
CLASP(Contrastive Language-Speech Pretraining)は、音声テキスト情報検索に適した多言語表現である。
トレーニングでは,フィクションから宗教まで15の分野を対象とする音声テキストデータセットを新たに導入した。
複数の言語で評価した結果、CLASPはHITS@1、MRR、平均Rメトリクスで新しいベンチマークを確立している。
論文 参考訳(メタデータ) (2024-12-17T16:38:10Z) - Multilingual self-supervised speech representations improve the speech
recognition of low-resource African languages with codeswitching [65.74653592668743]
微細な自己教師型多言語表現は絶対単語誤り率を最大20%削減する。
訓練データに制限のある状況では、自己教師付き表現を微調整することが、より良いパフォーマンスと実行可能なソリューションである。
論文 参考訳(メタデータ) (2023-11-25T17:05:21Z) - Unified model for code-switching speech recognition and language
identification based on a concatenated tokenizer [17.700515986659063]
Code-Switching (CS) Multilingual Automatic Speech Recognition (ASR) モデルは会話中に2つ以上の交互言語を含む音声を転写することができる。
本稿では,純粋にモノリンガルなデータソースからASRデータセットをコードスイッチングする新しい手法を提案する。
新たな Concatenated Tokenizer により、ASR モデルは既存のモノリンガルトークンを再利用しながら、出力されたテキストトークンごとに言語IDを生成することができる。
論文 参考訳(メタデータ) (2023-06-14T21:24:11Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
公的な事前訓練された音声のみのモデルと言語のみのモデルからなる複合アーキテクチャ上に構築された音声言語モデルであるComSLを提案する。
提案手法は,エンドツーエンドの音声-テキスト翻訳タスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:42:15Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - mSLAM: Massively multilingual joint pre-training for speech and text [43.32334037420761]
mSLAMは、多言語で大量の未ラベルの音声とテキストを共同で事前学習することで、音声とテキストの言語間クロスモーダル表現を学習する。
テキストによる共同事前学習により、音声翻訳、音声意図分類、音声言語-IDの質が向上することがわかった。
論文 参考訳(メタデータ) (2022-02-03T02:26:40Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSRは、複数の言語における音声の生波形から1つのモデルを事前学習することで、言語間音声表現を学習する。
我々は、マスク付き潜在音声表現よりも対照的なタスクを解くことで訓練されたwav2vec 2.0を構築した。
実験により、言語間事前学習はモノリンガル事前訓練よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2020-06-24T18:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。