Simple is what you need for efficient and accurate medical image segmentation
- URL: http://arxiv.org/abs/2506.13415v1
- Date: Mon, 16 Jun 2025 12:31:48 GMT
- Title: Simple is what you need for efficient and accurate medical image segmentation
- Authors: Xiang Yu, Yayan Chen, Guannan He, Qing Zeng, Yue Qin, Meiling Liang, Dandan Luo, Yimei Liao, Zeyu Ren, Cheng Kang, Delong Yang, Bocheng Liang, Bin Pu, Ying Yuan, Shengli Li,
- Abstract summary: This paper presents SimpleUNet, a scalable ultra-lightweight medical image segmentation model.<n>With a record-breaking 16 KB parameter configuration, SimpleUNet outperforms LBUNet and other lightweight benchmarks.<n>The 0.67 MB variant achieves superior efficiency (8.60 GFLOPs) and accuracy, attaining a mean DSC/IoU of 85.76%/75.60% on multi-center breast lesion datasets.
- Score: 7.2109224546543675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While modern segmentation models often prioritize performance over practicality, we advocate a design philosophy prioritizing simplicity and efficiency, and attempted high performance segmentation model design. This paper presents SimpleUNet, a scalable ultra-lightweight medical image segmentation model with three key innovations: (1) A partial feature selection mechanism in skip connections for redundancy reduction while enhancing segmentation performance; (2) A fixed-width architecture that prevents exponential parameter growth across network stages; (3) An adaptive feature fusion module achieving enhanced representation with minimal computational overhead. With a record-breaking 16 KB parameter configuration, SimpleUNet outperforms LBUNet and other lightweight benchmarks across multiple public datasets. The 0.67 MB variant achieves superior efficiency (8.60 GFLOPs) and accuracy, attaining a mean DSC/IoU of 85.76%/75.60% on multi-center breast lesion datasets, surpassing both U-Net and TransUNet. Evaluations on skin lesion datasets (ISIC 2017/2018: mDice 84.86%/88.77%) and endoscopic polyp segmentation (KVASIR-SEG: 86.46%/76.48% mDice/mIoU) confirm consistent dominance over state-of-the-art models. This work demonstrates that extreme model compression need not compromise performance, providing new insights for efficient and accurate medical image segmentation. Codes can be found at https://github.com/Frankyu5666666/SimpleUNet.
Related papers
- MLRU++: Multiscale Lightweight Residual UNETR++ with Attention for Efficient 3D Medical Image Segmentation [3.014234061484863]
Multiscale Lightweight Residual UNETR++ architecture designed to balance segmentation accuracy and computational efficiency.<n>Experiments on four publicly available benchmark datasets demonstrate that MLRU++ achieves state-of-the-art performance.<n>Results suggest that MLRU++ offers a practical and high-performing solution for 3D medical image segmentation tasks.
arXiv Detail & Related papers (2025-07-22T00:30:44Z) - Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
We propose a novel Domain-Adaptive Prompt framework for fine-tuning the Segment Anything Model (termed as DAPSAM) in segmenting medical images.
Our DAPSAM achieves state-of-the-art performance on two medical image segmentation tasks with different modalities.
arXiv Detail & Related papers (2024-09-19T07:28:33Z) - LHU-Net: A Light Hybrid U-Net for Cost-Efficient, High-Performance Volumetric Medical Image Segmentation [4.168081528698768]
We introduce LHU-Net, a streamlined Hybrid U-Net for medical image segmentation.
Tested on five benchmark datasets, LHU-Net demonstrated superior efficiency and accuracy.
arXiv Detail & Related papers (2024-04-07T22:58:18Z) - LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation [2.0901574458380403]
We propose a new lightweight but efficient model, namely LiteNeXt, for medical image segmentation.<n>The model is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42).<n>Experiments on public datasets including Data Science Bowls, GlaS, ISIC2018, PH2, Sunnybrook, and Lung X-ray data show promising results.
arXiv Detail & Related papers (2024-04-04T01:59:19Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes.
We propose PMFSNet, a novel medical imaging segmentation model that balances global local feature processing while avoiding computational redundancy.
It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.
arXiv Detail & Related papers (2024-01-15T10:26:47Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - SegNeXt: Rethinking Convolutional Attention Design for Semantic
Segmentation [100.89770978711464]
We present SegNeXt, a simple convolutional network architecture for semantic segmentation.
We show that convolutional attention is a more efficient and effective way to encode contextual information than the self-attention mechanism in transformers.
arXiv Detail & Related papers (2022-09-18T14:33:49Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z) - EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense
Prediction [67.11722682878722]
This work presents EfficientViT, a new family of high-resolution vision models with novel multi-scale linear attention.
Our multi-scale linear attention achieves the global receptive field and multi-scale learning.
EfficientViT delivers remarkable performance gains over previous state-of-the-art models.
arXiv Detail & Related papers (2022-05-29T20:07:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.