論文の概要: UAV Object Detection and Positioning in a Mining Industrial Metaverse with Custom Geo-Referenced Data
- arxiv url: http://arxiv.org/abs/2506.13505v1
- Date: Mon, 16 Jun 2025 13:59:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:48.604445
- Title: UAV Object Detection and Positioning in a Mining Industrial Metaverse with Custom Geo-Referenced Data
- Title(参考訳): カスタムジオレファレンスデータを用いた鉱業メタバース中のUAV物体の検出と位置決め
- Authors: Vasiliki Balaska, Ioannis Tsampikos Papapetros, Katerina Maria Oikonomou, Loukas Bampis, Antonios Gasteratos,
- Abstract要約: 本研究では,UAVに基づくセンシング,LiDAR地形モデリング,深層学習に基づく物体検出を組み合わせた統合システムアーキテクチャを提案する。
提案するパイプラインには、ジオレファレンス、3次元再構成、オブジェクトの局所化が含まれており、構造化された空間出力を産業用デジタルツインプラットフォームに統合することができる。
- 参考スコア(独自算出の注目度): 6.361348748202732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The mining sector increasingly adopts digital tools to improve operational efficiency, safety, and data-driven decision-making. One of the key challenges remains the reliable acquisition of high-resolution, geo-referenced spatial information to support core activities such as extraction planning and on-site monitoring. This work presents an integrated system architecture that combines UAV-based sensing, LiDAR terrain modeling, and deep learning-based object detection to generate spatially accurate information for open-pit mining environments. The proposed pipeline includes geo-referencing, 3D reconstruction, and object localization, enabling structured spatial outputs to be integrated into an industrial digital twin platform. Unlike traditional static surveying methods, the system offers higher coverage and automation potential, with modular components suitable for deployment in real-world industrial contexts. While the current implementation operates in post-flight batch mode, it lays the foundation for real-time extensions. The system contributes to the development of AI-enhanced remote sensing in mining by demonstrating a scalable and field-validated geospatial data workflow that supports situational awareness and infrastructure safety.
- Abstract(参考訳): 鉱業部門は、運用効率、安全性、データ駆動型意思決定を改善するために、デジタルツールをますます採用している。
重要な課題の1つは、抽出計画や現場監視といった中核的な活動を支援するために、高解像度で地理的に参照された空間情報を確実に取得することである。
本研究では,UAVに基づくセンシング,LiDAR地形モデリング,深層学習に基づく物体検出を組み合わせた統合システムアーキテクチャを提案する。
提案するパイプラインには、ジオレファレンス、3次元再構成、オブジェクトの局所化が含まれており、構造化された空間出力を産業用デジタルツインプラットフォームに統合することができる。
従来の静的サーベイ方法とは異なり、システムはより高いカバレッジと自動化可能性を提供し、実際の産業環境でのデプロイメントに適したモジュールコンポーネントを提供する。
現在の実装は飛行後バッチモードで動作するが、リアルタイム拡張の基盤となっている。
このシステムは、状況認識とインフラの安全性をサポートするスケーラブルでフィールド検証可能な地理空間データワークフローを実証することにより、マイニングにおけるAI強化されたリモートセンシングの開発に寄与する。
関連論文リスト
- Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
本稿では,GoDiffという新しい単一ドメインオブジェクト検出一般化手法を提案する。
擬似ターゲットドメインデータとソースドメインデータを統合することで、トレーニングデータセットを多様化する。
実験により,本手法は既存の検出器の一般化能力を高めるだけでなく,他の単一領域一般化手法のプラグ・アンド・プレイ拡張として機能することが示された。
論文 参考訳(メタデータ) (2024-12-18T13:03:00Z) - Towards Scenario- and Capability-Driven Dataset Development and Evaluation: An Approach in the Context of Mapless Automated Driving [0.0]
本稿では,自動走行における環境認識のためのデータセット開発プロセスに焦点を当てる。
本稿では,データセット開発におけるシナリオと能力に基づくアプローチを提案する。
この方法論を、既存のレーン検出データセットの幅広い範囲に適用することにより、現在のデータセットにおける重要な制限を特定します。
論文 参考訳(メタデータ) (2024-04-30T15:52:49Z) - IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
ビデオ異常検出(VAD)は,ビデオフレーム内の異常を認識することを目的とした課題である。
本稿では,産業シナリオにおけるVADに特化して設計された新しいデータセットIPADを提案する。
このデータセットは16の異なる産業用デバイスをカバーし、合成ビデオと実世界のビデオの両方を6時間以上保存している。
論文 参考訳(メタデータ) (2024-04-23T13:38:01Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Real-time Aerial Detection and Reasoning on Embedded-UAVs [3.0839245814393728]
本稿では,UAVの組込みシステム上でのリアルタイム検出システムのための統合パイプラインアーキテクチャを提案する。
このネットワークのパイプラインは、空中歩行者検出と活動認識に関するドメイン固有の知識を活用することができる。
論文 参考訳(メタデータ) (2023-05-21T09:43:17Z) - Virtual Reality via Object Poses and Active Learning: Realizing
Telepresence Robots with Aerial Manipulation Capabilities [39.29763956979895]
本稿では,動的・非構造環境下での空中操作を進展させる新しいテレプレゼンスシステムを提案する。
提案システムは触覚デバイスだけでなく、ロボットのワークスペースのリアルタイム3Dディスプレイを提供する仮想現実(VR)インターフェースも備えている。
DLRケーブル・サスペンド・エアリアルマニピュレータ(SAM)によるピック・アンド・プレイス、フォース・アプリケーション、ペグ・イン・ホールの70以上の堅牢な実行を示す。
論文 参考訳(メタデータ) (2022-10-18T08:42:30Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Online Grounding of PDDL Domains by Acting and Sensing in Unknown
Environments [62.11612385360421]
本稿では,エージェントが異なるタスクを実行できるフレームワークを提案する。
機械学習モデルを統合して、感覚データを抽象化し、目標達成のためのシンボリックプランニング、ナビゲーションのためのパスプランニングを行う。
提案手法を,RGB-Dオンボードカメラ,GPS,コンパスなど,正確なシミュレーション環境で評価する。
論文 参考訳(メタデータ) (2021-12-18T21:48:20Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Deep Learning Framework for Detecting Ground Deformation in the Built
Environment using Satellite InSAR data [7.503635457124339]
我々は、全国規模の速度場における変形を検出するために、事前訓練された畳み込みニューラルネットワーク(CNN)を適用した。
我々は、以前特定された変形が石炭採掘、地下水流出、地すべり、トンネル掘削と関係している英国に焦点を当てる。
本研究は, 自動地動解析システムの開発に提案手法が適用可能であることを示すものである。
論文 参考訳(メタデータ) (2020-05-07T03:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。