High-expressibility Quantum Neural Networks using only classical resources
- URL: http://arxiv.org/abs/2506.13605v1
- Date: Mon, 16 Jun 2025 15:29:28 GMT
- Title: High-expressibility Quantum Neural Networks using only classical resources
- Authors: Marco Maronese, Francesco Ferrari, Matteo Vandelli, Daniele Dragoni,
- Abstract summary: We study the expressibility of parametrized quantum circuit commonly used in QNN applications.<n>We find that high expressibility in QNNs is attainable with purely classical resources.
- Score: 2.349637893207168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum neural networks (QNNs), as currently formulated, are near-term quantum machine learning architectures that leverage parameterized quantum circuits with the aim of improving upon the performance of their classical counterparts. In this work, we show that some desired properties attributed to these models can be efficiently reproduced without necessarily resorting to quantum hardware. We indeed study the expressibility of parametrized quantum circuit commonly used in QNN applications and contrast it to those of two classes of states that can be efficiently simulated classically: matrix-product states (MPS), and Clifford-enhanced MPS (CMPS), obtained by applying a set of Clifford gates to MPS. In addition to expressibility, we assess the level of primary quantum resources, entanglement and non-stabilizerness (a.k.a. "magic"), in random ensembles of such quantum states, tracking their convergence to the Haar distribution. While MPS require a large number of parameters to reproduce an arbitrary quantum state, we find that CMPS approach the Haar distribution more rapidly, in terms of both entanglement and magic. Our results indicate that high expressibility in QNNs is attainable with purely classical resources.
Related papers
- Hybrid Quantum--Classical Machine Learning Potential with Variational Quantum Circuits [0.0]
Hybrid quantum-classical algorithms combine conventional neural networks with variational quantum circuits (VQCs) running on today's noisy intermediate-scale quantum (NISQ) hardware.<n>Here we benchmark a purely classical E(3)-equi-variant message-passing machine learning potential (MLP) against a hybrid quantum-classical algorithm for predicting density functional theory (DFT) properties of liquid silicon.
arXiv Detail & Related papers (2025-08-06T05:30:25Z) - Iterative Quantum Feature Maps [0.0]
Quantum machine learning models that leverage quantum circuits as quantum feature maps (QFMs) are recognized for their enhanced expressive power in learning tasks.<n> deploying deep QFMs on real quantum hardware remains challenging due to circuit noise and hardware constraints.<n>We propose Iterative Quantum Feature Maps (IQFMs), a hybrid quantum-classical framework that constructs a deep architecture by iteratively connecting shallow QFMs with classically computed augmentation weights.
arXiv Detail & Related papers (2025-06-24T09:40:10Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - Hybrid Quantum Neural Networks with Variational Quantum Regressor for Enhancing QSPR Modeling of CO2-Capturing Amine [0.9968037829925945]
We develop hybrid quantum neural networks (HQNN) to improve structure-property relationship modeling for CO2-capturing amines.<n>HQNNs improve predictive accuracy for key solvent properties, including basicity, viscosity, boiling point, melting point, and vapor pressure.
arXiv Detail & Related papers (2025-03-01T07:26:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
Matrix Product States (MPS) and Operators (MPO) have been proven to be a powerful tool to study quantum many-body systems.
We show that using classical knowledge in the form of tensor networks provides a way to better use limited quantum resources.
arXiv Detail & Related papers (2023-05-30T17:21:52Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks [0.0]
Quantum neural networks (QNN) have been proposed as a promising architecture for quantum machine learning.
One candidate is quantum perceptrons designed to emulate the nonlinear activation functions of classical perceptrons.
We critically investigate both the capabilities and performance of SQP networks by computing their effective dimension and effective capacity.
arXiv Detail & Related papers (2022-08-12T10:08:11Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.