Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation
- URL: http://arxiv.org/abs/2305.19231v2
- Date: Mon, 8 Jan 2024 17:47:18 GMT
- Title: Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation
- Authors: Baptiste Anselme Martin, Thomas Ayral, Fran\c{c}ois Jamet, Marko J.
Ran\v{c}i\'c, Pascal Simon
- Abstract summary: Matrix Product States (MPS) and Operators (MPO) have been proven to be a powerful tool to study quantum many-body systems.
We show that using classical knowledge in the form of tensor networks provides a way to better use limited quantum resources.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matrix Product States (MPS) and Operators (MPO) have been proven to be a
powerful tool to study quantum many-body systems but are restricted to
moderately entangled states as the number of parameters scales exponentially
with the entanglement entropy. While MPS can efficiently find ground states of
1D systems, their capacities are limited when simulating their dynamics, where
the entanglement can increase ballistically with time. On the other hand,
quantum devices appear as a natural platform to encode and perform the time
evolution of correlated many-body states. However, accessing the regime of
long-time dynamics is hampered by quantum noise. In this study we use the best
of worlds: the short-time dynamics is efficiently performed by MPSs, compiled
into short-depth quantum circuits, and is performed further in time on a
quantum computer thanks to efficient MPO-optimized quantum circuits. We
quantify the capacities of this hybrid classical-quantum scheme in terms of
fidelities taking into account a noise model. We show that using classical
knowledge in the form of tensor networks provides a way to better use limited
quantum resources and lowers drastically the noise requirements to reach a
practical quantum advantage. Finally we successfully demonstrate our approach
with an experimental realization of the technique. Combined with efficient
circuit transpilation we simulate a 10-qubit system on an actual quantum device
over a longer time scale than low-bond-dimension MPSs and purely quantum
Trotter evolution.
Related papers
- Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm [0.0]
Digital quantum computers promise exponential speedups in performing quantum time-evolution.
The task of extracting desired quantum properties at intermediate time steps remains a computational bottleneck.
We propose a hybrid simulator that enables classical computers to leverage FTQC devices and quantum time propagators to overcome this bottleneck.
arXiv Detail & Related papers (2024-05-17T04:17:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Simulating open quantum many-body systems using optimised circuits in
digital quantum simulation [0.0]
We study models in open quantum systems with Trotterisations for the modified Schr"odinger equation (MSSE)
Minimising the leading error in MSSE enables to optimise the quantum circuits.
We run the algorithm on the IBM Quantum devices, showing that the current machine is challenging to give quantitatively accurate time dynamics due to the noise.
arXiv Detail & Related papers (2022-03-27T13:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
We build dynamic quantum circuits on a superconducting-based quantum system.
We exploit one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version.
We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage.
arXiv Detail & Related papers (2021-02-02T18:51:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.