Tree-Based Text Retrieval via Hierarchical Clustering in RAGFrameworks: Application on Taiwanese Regulations
- URL: http://arxiv.org/abs/2506.13607v1
- Date: Mon, 16 Jun 2025 15:34:29 GMT
- Title: Tree-Based Text Retrieval via Hierarchical Clustering in RAGFrameworks: Application on Taiwanese Regulations
- Authors: Chia-Heng Yu, Yen-Lung Tsai,
- Abstract summary: We propose a hierarchical clustering-based retrieval method that eliminates the need to predefine k.<n>Our approach maintains the accuracy and relevance of system responses while adaptively selecting semantically relevant content.<n>Our framework is simple to implement and easily integrates with existing RAG pipelines, making it a practical solution for real-world applications under limited resources.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional Retrieval-Augmented Generation (RAG) systems employ brute-force inner product search to retrieve the top-k most similar documents, then combined with the user query and passed to a language model. This allows the model to access external knowledge and reduce hallucinations. However, selecting an appropriate k value remains a significant challenge in practical applications: a small k may fail to retrieve sufficient information, while a large k can introduce excessive and irrelevant content. To address this, we propose a hierarchical clustering-based retrieval method that eliminates the need to predefine k. Our approach maintains the accuracy and relevance of system responses while adaptively selecting semantically relevant content. In the experiment stage, we applied our method to a Taiwanese legal dataset with expert-graded queries. The results show that our approach achieves superior performance in expert evaluations and maintains high precision while eliminating the need to predefine k, demonstrating improved accuracy and interpretability in legal text retrieval tasks. Our framework is simple to implement and easily integrates with existing RAG pipelines, making it a practical solution for real-world applications under limited resources.
Related papers
- KinyaColBERT: A Lexically Grounded Retrieval Model for Low-Resource Retrieval-Augmented Generation [5.236553729261855]
We propose a new retriever model, KinyaColBERT, which integrates two key concepts: late word-level interactions between queries and documents, and a morphology-based tokenization coupled with two-tier transformer encoding.<n>Our evaluation results indicate that KinyaColBERT outperforms strong baselines and leading commercial text embedding APIs on a Kinyarwanda agricultural retrieval benchmark.
arXiv Detail & Related papers (2025-07-04T01:18:08Z) - ELITE: Embedding-Less retrieval with Iterative Text Exploration [5.8851517822935335]
Large Language Models (LLMs) have achieved impressive progress in natural language processing.<n>Their limited ability to retain long-term context constrains performance on document-level or multi-turn tasks.
arXiv Detail & Related papers (2025-05-17T08:48:43Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.<n>Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.<n>We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
Legal case retrieval aims to provide similar cases as references for a given fact description.
Existing works mainly focus on case-to-case retrieval using lengthy queries.
Data scale is insufficient to satisfy the training requirements of existing data-hungry neural models.
arXiv Detail & Related papers (2024-10-09T06:26:39Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Augmented Embeddings for Custom Retrievals [13.773007276544913]
We introduce Adapted Dense Retrieval, a mechanism to transform embeddings to enable improved task-specific, heterogeneous and strict retrieval.
Dense Retrieval works by learning a low-rank residual adaptation of the pretrained black-box embedding.
arXiv Detail & Related papers (2023-10-09T03:29:35Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
Information retrieval is a critical component for many down-stream tasks such as open-domain question answering (QA)
We propose an information retrieval pipeline that uses entity/event linking model and query decomposition model to focus more accurately on different information units of the query.
We show that, while being more interpretable and reliable, our proposed pipeline significantly improves passage coverages and denotation accuracies across five IR and QA benchmarks.
arXiv Detail & Related papers (2023-08-09T07:47:17Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
Large-scale retrieval is to recall relevant documents from a huge collection given a query.
Recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms.
We propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability.
arXiv Detail & Related papers (2022-05-23T11:01:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.