KinyaColBERT: A Lexically Grounded Retrieval Model for Low-Resource Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2507.03241v1
- Date: Fri, 04 Jul 2025 01:18:08 GMT
- Title: KinyaColBERT: A Lexically Grounded Retrieval Model for Low-Resource Retrieval-Augmented Generation
- Authors: Antoine Nzeyimana, Andre Niyongabo Rubungo,
- Abstract summary: We propose a new retriever model, KinyaColBERT, which integrates two key concepts: late word-level interactions between queries and documents, and a morphology-based tokenization coupled with two-tier transformer encoding.<n>Our evaluation results indicate that KinyaColBERT outperforms strong baselines and leading commercial text embedding APIs on a Kinyarwanda agricultural retrieval benchmark.
- Score: 5.236553729261855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent mainstream adoption of large language model (LLM) technology is enabling novel applications in the form of chatbots and virtual assistants across many domains. With the aim of grounding LLMs in trusted domains and avoiding the problem of hallucinations, retrieval-augmented generation (RAG) has emerged as a viable solution. In order to deploy sustainable RAG systems in low-resource settings, achieving high retrieval accuracy is not only a usability requirement but also a cost-saving strategy. Through empirical evaluations on a Kinyarwanda-language dataset, we find that the most limiting factors in achieving high retrieval accuracy are limited language coverage and inadequate sub-word tokenization in pre-trained language models. We propose a new retriever model, KinyaColBERT, which integrates two key concepts: late word-level interactions between queries and documents, and a morphology-based tokenization coupled with two-tier transformer encoding. This methodology results in lexically grounded contextual embeddings that are both fine-grained and self-contained. Our evaluation results indicate that KinyaColBERT outperforms strong baselines and leading commercial text embedding APIs on a Kinyarwanda agricultural retrieval benchmark. By adopting this retrieval strategy, we believe that practitioners in other low-resource settings can not only achieve reliable RAG systems but also deploy solutions that are more cost-effective.
Related papers
- CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation [31.469511576774252]
We propose a context-aware adaptive decoding method for large language models.<n>Our approach achieves a 2.8 percent average improvement on TruthfulQA.<n>Our model-agnostic, scalable, and efficient method requires only a single generation pass.
arXiv Detail & Related papers (2025-08-04T08:28:25Z) - Tree-Based Text Retrieval via Hierarchical Clustering in RAGFrameworks: Application on Taiwanese Regulations [0.0]
We propose a hierarchical clustering-based retrieval method that eliminates the need to predefine k.<n>Our approach maintains the accuracy and relevance of system responses while adaptively selecting semantically relevant content.<n>Our framework is simple to implement and easily integrates with existing RAG pipelines, making it a practical solution for real-world applications under limited resources.
arXiv Detail & Related papers (2025-06-16T15:34:29Z) - Detect, Explain, Escalate: Low-Carbon Dialogue Breakdown Management for LLM-Powered Agents [30.13634341221476]
Large Language Models (LLMs) are transforming numerous applications, but their susceptibility to conversational breakdowns remains a critical challenge undermining user trust.<n>This paper introduces a "Detect, Explain, Escalate" framework to manage dialogue breakdowns in LLM-powered agents, emphasizing low-carbon operation.
arXiv Detail & Related papers (2025-04-26T07:51:05Z) - Constrained Auto-Regressive Decoding Constrains Generative Retrieval [71.71161220261655]
Generative retrieval seeks to replace traditional search index data structures with a single large-scale neural network.<n>In this paper, we examine the inherent limitations of constrained auto-regressive generation from two essential perspectives: constraints and beam search.
arXiv Detail & Related papers (2025-04-14T06:54:49Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) is a cross-modal task that evaluates the interplay of language understanding, image comprehension, and language-to-image grounding.<n>It serves as an essential testing ground for Multimodal Large Language Models (MLLMs)
arXiv Detail & Related papers (2025-02-27T13:58:44Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.<n>Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.<n>We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
We introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction.
The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses.
LLMs with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list.
arXiv Detail & Related papers (2023-09-27T14:44:10Z) - Rationale-Guided Few-Shot Classification to Detect Abusive Language [5.977278650516324]
We propose RGFS (Rationale-Guided Few-Shot Classification) for abusive language detection.
We introduce two rationale-integrated BERT-based architectures (the RGFS models) and evaluate our systems over five different abusive language datasets.
arXiv Detail & Related papers (2022-11-30T14:47:14Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation [77.62366712130196]
We present the winning entry at the fast domain adaptation task of DSTC8, a hybrid generative-retrieval model based on GPT-2 fine-tuned to the multi-domain MetaLWOz dataset.
Our model uses retrieval logic as a fallback, being SoTA on MetaLWOz in human evaluation (>4% improvement over the 2nd place system) and attaining competitive generalization performance in adaptation to the unseen MultiWOZ dataset.
arXiv Detail & Related papers (2020-03-03T18:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.