EUNIS Habitat Maps: Enhancing Thematic and Spatial Resolution for Europe through Machine Learning
- URL: http://arxiv.org/abs/2506.13649v1
- Date: Mon, 16 Jun 2025 16:10:08 GMT
- Title: EUNIS Habitat Maps: Enhancing Thematic and Spatial Resolution for Europe through Machine Learning
- Authors: Sara Si-Moussi, Stephan Hennekens, Sander Mücher, Wanda De Keersmaecker, Milan Chytrý, Emiliano Agrillo, Fabio Attorre, Idoia Biurrun, Gianmaria Bonari, Andraž Čarni, Renata Ćušterevska, Tetiana Dziuba, Klaus Ecker, Behlül Güler, Ute Jandt, Borja Jiménez-Alfaro, Jonathan Lenoir, Jens-Christian Svenning, Grzegorz Swacha, Wilfried Thuiller,
- Abstract summary: The EUNIS habitat classification is crucial for categorising European habitats.<n>We provide predictions for 260 EUNIS habitat types at hierarchical level 3.<n>We produce a European habitat map indicating the most probable EUNIS habitat at 100-m resolution across Europe.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The EUNIS habitat classification is crucial for categorising European habitats, supporting European policy on nature conservation and implementing the Nature Restoration Law. To meet the growing demand for detailed and accurate habitat information, we provide spatial predictions for 260 EUNIS habitat types at hierarchical level 3, together with independent validation and uncertainty analyses. Using ensemble machine learning models, together with high-resolution satellite imagery and ecologically meaningful climatic, topographic and edaphic variables, we produced a European habitat map indicating the most probable EUNIS habitat at 100-m resolution across Europe. Additionally, we provide information on prediction uncertainty and the most probable habitats at level 3 within each EUNIS level 1 formation. This product is particularly useful for both conservation and restoration purposes. Predictions were cross-validated at European scale using a spatial block cross-validation and evaluated against independent data from France (forests only), the Netherlands and Austria. The habitat maps obtained strong predictive performances on the validation datasets with distinct trade-offs in terms of recall and precision across habitat formations.
Related papers
- Modeling Habitat Shifts: Integrating Convolutional Neural Networks and Tabular Data for Species Migration Prediction [0.0]
We propose a solution to accurately model whether bird species are present in a specific habitat.<n>Our approach makes use of satellite imagery and environmental features to predict bird presence across various climates.<n>Both systems predict the distribution of birds with an average accuracy of 85%, offering a scalable but reliable method to understand bird migration.
arXiv Detail & Related papers (2025-07-15T05:17:58Z) - Continental scale habitat modelling with artificial intelligence and multimodal earth observation [0.0]
Habitats integrate the abiotic conditions and biophysical structures that support biodiversity and sustain nature's contributions to people.<n>Current maps often fall short in thematic or spatial resolution because they must model several mutually exclusive habitat types.<n>Here, we evaluated how high-resolution remote sensing (RS) data and Artificial Intelligence (AI) tools can improve habitat classification over large geographic extents.
arXiv Detail & Related papers (2025-07-13T18:11:26Z) - BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning [51.341003735575335]
We find emergent behaviors in biological vision models via large-scale contrastive vision-language training.<n>We train BioCLIP 2 on TreeOfLife-200M to distinguish different species.<n>We identify emergent properties in the learned embedding space of BioCLIP 2.
arXiv Detail & Related papers (2025-05-29T17:48:20Z) - Feedforward Few-shot Species Range Estimation [61.60698161072356]
Knowing where a particular species can or cannot be found on Earth is crucial for ecological research and conservation efforts.<n> accurate range estimates are only available for a relatively small proportion of all known species.<n>We outline a new approach for few-shot species range estimation to address the challenge of accurately estimating the range of a species from limited data.
arXiv Detail & Related papers (2025-02-20T19:13:29Z) - Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia.<n>Our framework maps locations, species, and text descriptions into a common space, enabling zero-shot range estimation from textual descriptions.<n>Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data.
arXiv Detail & Related papers (2024-10-14T17:22:55Z) - A Geospatial Approach to Predicting Desert Locust Breeding Grounds in Africa [3.6826233660285395]
locust swarms present a major threat to agriculture and food security.
Our study develops an operationally-ready model for predicting locust breeding grounds.
arXiv Detail & Related papers (2024-03-11T16:13:58Z) - Modelling Species Distributions with Deep Learning to Predict Plant
Extinction Risk and Assess Climate Change Impacts [2.874893537471256]
We evaluate a novel method for classifying the IUCN status of species.
Our method matches state-of-the-art classification performance while relying on flexible SDM-based features.
The proportion of threatened species is increasing globally, with critical rates in Africa, Asia and South America.
arXiv Detail & Related papers (2024-01-10T15:24:27Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
We present our novel lightweight (only 89k parameters) Convolution Neural Network (ConvNet) to make LC classification and analysis.
In this work, we combine three real-world open data sources to obtain 13 channels.
Our embedded analysis anticipates the limited performance in some classes and gives us the opportunity to group the most similar.
arXiv Detail & Related papers (2022-01-26T14:58:51Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - Inter and Intra-Annual Spatio-Temporal Variability of Habitat
Suitability for Asian Elephants in India: A Random Forest Model-based
Analysis [1.370633147306388]
We develop a Random Forest model to estimate the species distribution of Asian elephants in India.
We observe that seasonal reduction in the suitable habitat may explain the patterns of Asian elephants and the increasing human-elephant conflict.
arXiv Detail & Related papers (2021-07-22T06:42:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.