A Geospatial Approach to Predicting Desert Locust Breeding Grounds in Africa
- URL: http://arxiv.org/abs/2403.06860v2
- Date: Thu, 21 Mar 2024 17:06:49 GMT
- Title: A Geospatial Approach to Predicting Desert Locust Breeding Grounds in Africa
- Authors: Ibrahim Salihu Yusuf, Mukhtar Opeyemi Yusuf, Kobby Panford-Quainoo, Arnu Pretorius,
- Abstract summary: locust swarms present a major threat to agriculture and food security.
Our study develops an operationally-ready model for predicting locust breeding grounds.
- Score: 3.6826233660285395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Desert locust swarms present a major threat to agriculture and food security. Addressing this challenge, our study develops an operationally-ready model for predicting locust breeding grounds, which has the potential to enhance early warning systems and targeted control measures. We curated a dataset from the United Nations Food and Agriculture Organization's (UN-FAO) locust observation records and analyzed it using two types of spatio-temporal input features: remotely-sensed environmental and climate data as well as multi-spectral earth observation images. Our approach employed custom deep learning models (three-dimensional and LSTM-based recurrent convolutional networks), along with the geospatial foundational model Prithvi recently released by Jakubik et al., 2023. These models notably outperformed existing baselines, with the Prithvi-based model, fine-tuned on multi-spectral images from NASA's Harmonized Landsat and Sentinel-2 (HLS) dataset, achieving the highest accuracy, F1 and ROC-AUC scores (83.03%, 81.53% and 87.69%, respectively). A significant finding from our research is that multi-spectral earth observation images alone are sufficient for effective locust breeding ground prediction without the need to explicitly incorporate climatic or environmental features.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning [1.6889377382676625]
We release a large dataset of individual shrub delineations on freely available satellite imagery.
We use an instance segmentation model to map all junipers over the treeline for an entire biosphere reserve.
Our model achieved an F1-score in shrub delineation of 87.87% on the PI data and 76.86% on the FW data.
arXiv Detail & Related papers (2024-01-31T16:44:20Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive data.
We have utilized this framework to create Prithvi, a transformer-based foundational model pre-trained on more than 1TB of multispectral satellite imagery.
arXiv Detail & Related papers (2023-10-28T10:19:55Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Multi-modal learning for geospatial vegetation forecasting [1.8180482634934092]
We introduce GreenEarthNet, the first dataset specifically designed for high-resolution vegetation forecasting.
We also present Contextformer, a novel deep learning approach for predicting vegetation greenness from Sentinel 2 satellite images.
To the best of our knowledge, this work presents the first models for continental-scale vegetation modeling at fine resolution able to capture anomalies beyond the seasonal cycle.
arXiv Detail & Related papers (2023-03-28T17:59:05Z) - Fuzzy clustering for the within-season estimation of cotton phenology [0.0]
We propose a new approach for the within-season phenology estimation for cotton at the field level.
Our method is unsupervised to address the ever-present problem of sparse and scarce ground truth data.
In order to evaluate our models, we collected 1,285 crop growth ground observations in Orchomenos, Greece.
arXiv Detail & Related papers (2022-11-25T13:30:57Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Global canopy height estimation with GEDI LIDAR waveforms and Bayesian
deep learning [20.692092680921274]
NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate mission whose goal is to advance our understanding of the role of forests in the global carbon cycle.
We present a novel supervised machine learning approach to interpret GEDI waveforms and regress canopy top height globally.
arXiv Detail & Related papers (2021-03-05T23:08:27Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.