We Should Identify and Mitigate Third-Party Safety Risks in MCP-Powered Agent Systems
- URL: http://arxiv.org/abs/2506.13666v1
- Date: Mon, 16 Jun 2025 16:24:31 GMT
- Title: We Should Identify and Mitigate Third-Party Safety Risks in MCP-Powered Agent Systems
- Authors: Junfeng Fang, Zijun Yao, Ruipeng Wang, Haokai Ma, Xiang Wang, Tat-Seng Chua,
- Abstract summary: We advocate the research community in LLM safety to pay close attention to the new safety risks issues introduced by MCP.<n>We conduct a series of pilot experiments to demonstrate the safety risks in MCP-powered agent systems is a real threat and its defense is not trivial.
- Score: 48.345884334050965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of large language models (LLMs) has entered in a experience-driven era, flagged by the emergence of environment feedback-driven learning via reinforcement learning and tool-using agents. This encourages the emergenece of model context protocol (MCP), which defines the standard on how should a LLM interact with external services, such as \api and data. However, as MCP becomes the de facto standard for LLM agent systems, it also introduces new safety risks. In particular, MCP introduces third-party services, which are not controlled by the LLM developers, into the agent systems. These third-party MCP services provider are potentially malicious and have the economic incentives to exploit vulnerabilities and sabotage user-agent interactions. In this position paper, we advocate the research community in LLM safety to pay close attention to the new safety risks issues introduced by MCP, and develop new techniques to build safe MCP-powered agent systems. To establish our position, we argue with three key parts. (1) We first construct \framework, a controlled framework to examine safety issues in MCP-powered agent systems. (2) We then conduct a series of pilot experiments to demonstrate the safety risks in MCP-powered agent systems is a real threat and its defense is not trivial. (3) Finally, we give our outlook by showing a roadmap to build safe MCP-powered agent systems. In particular, we would call for researchers to persue the following research directions: red teaming, MCP safe LLM development, MCP safety evaluation, MCP safety data accumulation, MCP service safeguard, and MCP safe ecosystem construction. We hope this position paper can raise the awareness of the research community in MCP safety and encourage more researchers to join this important research direction. Our code is available at https://github.com/littlelittlenine/SafeMCP.git.
Related papers
- Beyond the Protocol: Unveiling Attack Vectors in the Model Context Protocol Ecosystem [9.147044310206773]
The Model Context Protocol (MCP) is an emerging standard designed to enable seamless interaction between Large Language Model (LLM) applications and external tools or resources.<n>In this paper, we present the first systematic study of attack vectors targeting the MCP ecosystem.
arXiv Detail & Related papers (2025-05-31T08:01:11Z) - LLM Agents Should Employ Security Principles [60.03651084139836]
This paper argues that the well-established design principles in information security should be employed when deploying Large Language Model (LLM) agents at scale.<n>We introduce AgentSandbox, a conceptual framework embedding these security principles to provide safeguards throughout an agent's life-cycle.
arXiv Detail & Related papers (2025-05-29T21:39:08Z) - MCIP: Protecting MCP Safety via Model Contextual Integrity Protocol [40.43415601554268]
This paper proposes a novel framework to enhance Model Context Protocol safety.<n>Based on the MAESTRO framework, we first analyze the missing safety mechanisms in MCP.<n>Next, we develop a fine-grained taxonomy that captures a diverse range of unsafe behaviors observed in MCP scenarios.
arXiv Detail & Related papers (2025-05-20T16:41:45Z) - MCP Guardian: A Security-First Layer for Safeguarding MCP-Based AI System [0.0]
We present MCP Guardian, a framework that strengthens MCP-based communication with authentication, rate-limiting, logging, tracing, and Web Application Firewall (WAF) scanning.<n>Our approach fosters secure, scalable data access for AI assistants, underscoring the importance of a defense-in-depth approach.
arXiv Detail & Related papers (2025-04-17T08:49:10Z) - MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits [0.0]
The Model Context Protocol (MCP) is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools.<n>We show that the current MCP design carries a wide range of security risks for end users.<n>We introduce a safety auditing tool, MCPSafetyScanner, to assess the security of an arbitrary MCP server.
arXiv Detail & Related papers (2025-04-02T21:46:02Z) - Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends [64.57762280003618]
It is foreseeable that in the near future, LM-driven general AI agents will serve as essential tools in production tasks.<n>This paper investigates scenarios involving the autonomous collaboration of future LM agents.
arXiv Detail & Related papers (2024-09-22T14:09:49Z) - TrustAgent: Towards Safe and Trustworthy LLM-based Agents [50.33549510615024]
This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a focus on improving the LLM-based agent safety.
The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection.
arXiv Detail & Related papers (2024-02-02T17:26:23Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence.
However, the potential misuse of this intelligence for malicious purposes presents significant risks.
We propose a framework (PsySafe) grounded in agent psychology, focusing on identifying how dark personality traits in agents can lead to risky behaviors.
Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors.
arXiv Detail & Related papers (2024-01-22T12:11:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.