TrustAgent: Towards Safe and Trustworthy LLM-based Agents
- URL: http://arxiv.org/abs/2402.01586v4
- Date: Thu, 03 Oct 2024 22:12:05 GMT
- Title: TrustAgent: Towards Safe and Trustworthy LLM-based Agents
- Authors: Wenyue Hua, Xianjun Yang, Mingyu Jin, Zelong Li, Wei Cheng, Ruixiang Tang, Yongfeng Zhang,
- Abstract summary: This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a focus on improving the LLM-based agent safety.
The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection.
- Score: 50.33549510615024
- License:
- Abstract: The rise of LLM-based agents shows great potential to revolutionize task planning, capturing significant attention. Given that these agents will be integrated into high-stake domains, ensuring their reliability and safety is crucial. This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a particular focus on improving the LLM-based agent safety. The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection. Our experimental results demonstrate that the proposed framework can effectively enhance an LLM agent's safety across multiple domains by identifying and mitigating potential dangers during the planning. Further analysis reveals that the framework not only improves safety but also enhances the helpfulness of the agent. Additionally, we highlight the importance of the LLM reasoning ability in adhering to the Constitution. This paper sheds light on how to ensure the safe integration of LLM-based agents into human-centric environments. Data and code are available at https://github.com/agiresearch/TrustAgent.
Related papers
- AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety Detection [47.83354878065321]
We propose AGrail, a lifelong guardrail to enhance agent safety.
AGrail features adaptive safety check generation, effective safety check optimization, and tool compatibility and flexibility.
arXiv Detail & Related papers (2025-02-17T05:12:33Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
We introduce Agent-SafetyBench, a comprehensive benchmark to evaluate the safety of large language models (LLMs)
Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions.
Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%.
arXiv Detail & Related papers (2024-12-19T02:35:15Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.
This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - DAWN: Designing Distributed Agents in a Worldwide Network [0.38447712214412116]
DAWN enables distributed agents worldwide to register and be easily discovered through Gateway Agents.
No-LLM Mode for deterministic tasks, Copilot for augmented decision-making, and LLM Agent for autonomous operations.
DAWN ensures the safety and security of agent collaborations globally through a dedicated safety, security, and compliance layer.
arXiv Detail & Related papers (2024-10-11T18:47:04Z) - AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLM agents may pose a greater risk if misused, but their robustness remains underexplored.
We propose a new benchmark called AgentHarm to facilitate research on LLM agent misuse.
We find leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking.
arXiv Detail & Related papers (2024-10-11T17:39:22Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
Existing methods for enhancing the safety of large language models (LLMs) are not directly transferable to LLM-powered agents.
We propose GuardAgent, the first LLM agent as a guardrail to other LLM agents.
GuardAgent comprises two steps: 1) creating a task plan by analyzing the provided guard requests, and 2) generating guardrail code based on the task plan and executing the code by calling APIs or using external engines.
arXiv Detail & Related papers (2024-06-13T14:49:26Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - Evil Geniuses: Delving into the Safety of LLM-based Agents [35.49857256840015]
Large language models (LLMs) have revitalized in large language models (LLMs)
This paper delves into the safety of LLM-based agents from three perspectives: agent quantity, role definition, and attack level.
arXiv Detail & Related papers (2023-11-20T15:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.