Vid-CamEdit: Video Camera Trajectory Editing with Generative Rendering from Estimated Geometry
- URL: http://arxiv.org/abs/2506.13697v1
- Date: Mon, 16 Jun 2025 17:02:47 GMT
- Title: Vid-CamEdit: Video Camera Trajectory Editing with Generative Rendering from Estimated Geometry
- Authors: Junyoung Seo, Jisang Han, Jaewoo Jung, Siyoon Jin, Joungbin Lee, Takuya Narihira, Kazumi Fukuda, Takashi Shibuya, Donghoon Ahn, Shoukang Hu, Seungryong Kim, Yuki Mitsufuji,
- Abstract summary: We introduce Vid-CamEdit, a novel framework for video camera trajectory editing.<n>Our approach consists of two steps: estimating temporally consistent geometry, and generative rendering guided by this geometry.
- Score: 41.904066758259624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditional reconstruction methods struggle with extreme trajectory changes, and existing generative models for dynamic novel view synthesis cannot handle in-the-wild videos. Our approach consists of two steps: estimating temporally consistent geometry, and generative rendering guided by this geometry. By integrating geometric priors, the generative model focuses on synthesizing realistic details where the estimated geometry is uncertain. We eliminate the need for extensive 4D training data through a factorized fine-tuning framework that separately trains spatial and temporal components using multi-view image and video data. Our method outperforms baselines in producing plausible videos from novel camera trajectories, especially in extreme extrapolation scenarios on real-world footage.
Related papers
- GaVS: 3D-Grounded Video Stabilization via Temporally-Consistent Local Reconstruction and Rendering [54.489285024494855]
Video stabilization is pivotal for video processing, as it removes unwanted shakiness while preserving the original user motion intent.<n>Existing approaches, depending on the domain they operate, suffer from several issues that degrade the user experience.<n>We introduce textbfGaVS, a novel 3D-grounded approach that reformulates video stabilization as a temporally-consistent local reconstruction and rendering' paradigm.
arXiv Detail & Related papers (2025-06-30T15:24:27Z) - SpatialCrafter: Unleashing the Imagination of Video Diffusion Models for Scene Reconstruction from Limited Observations [42.69229582451846]
This work takes on the challenge of reconstructing 3D scenes from sparse or single-view inputs.<n>We introduce SpatialCrafter, a framework that leverages the rich knowledge in video diffusion models to generate plausible additional observations.<n>Through a trainable camera encoder and an epipolar attention mechanism for explicit geometric constraints, we achieve precise camera control and 3D consistency.
arXiv Detail & Related papers (2025-05-17T13:05:13Z) - TrajectoryCrafter: Redirecting Camera Trajectory for Monocular Videos via Diffusion Models [33.219657261649324]
TrajectoryCrafter is a novel approach to redirect camera trajectories for monocular videos.<n>By disentangling deterministic view transformations from content generation, our method achieves precise control over user-specified camera trajectories.
arXiv Detail & Related papers (2025-03-07T17:57:53Z) - VideoLifter: Lifting Videos to 3D with Fast Hierarchical Stereo Alignment [63.21396416244634]
VideoLifter is a novel video-to-3D pipeline that leverages a local-to-global strategy on a fragment basis.<n>It significantly accelerates the reconstruction process, reducing training time by over 82% while holding better visual quality than current SOTA methods.
arXiv Detail & Related papers (2025-01-03T18:52:36Z) - Multi-object Video Generation from Single Frame Layouts [84.55806837855846]
We propose a video generative framework capable of synthesizing global scenes with local objects.
Our framework is a non-trivial adaptation from image generation methods, and is new to this field.
Our model has been evaluated on two widely-used video recognition benchmarks.
arXiv Detail & Related papers (2023-05-06T09:07:01Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
We present a method for learning 3D geometry and physics parameters of a dynamic scene from only a monocular RGB video input.
Experiments show that our method achieves superior mesh and video reconstruction of dynamic scenes compared to competing Neural Field approaches.
arXiv Detail & Related papers (2022-10-22T04:57:55Z) - Infinite Nature: Perpetual View Generation of Natural Scenes from a
Single Image [73.56631858393148]
We introduce the problem of perpetual view generation -- long-range generation of novel views corresponding to an arbitrarily long camera trajectory given a single image.
We take a hybrid approach that integrates both geometry and image synthesis in an iterative render, refine, and repeat framework.
Our approach can be trained from a set of monocular video sequences without any manual annotation.
arXiv Detail & Related papers (2020-12-17T18:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.