StaQ it! Growing neural networks for Policy Mirror Descent
- URL: http://arxiv.org/abs/2506.13862v1
- Date: Mon, 16 Jun 2025 18:00:01 GMT
- Title: StaQ it! Growing neural networks for Policy Mirror Descent
- Authors: Alena Shilova, Alex Davey, Brahim Driss, Riad Akrour,
- Abstract summary: In Reinforcement Learning (RL), regularization has emerged as a popular tool both in theory and practice.<n>We propose and analyze PMD-like algorithms that only keep the last $M$ Q-functions in memory.<n>We show that for finite and large enough $M$, a convergent algorithm can be derived, introducing no error in the policy update.
- Score: 4.672862669694739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Reinforcement Learning (RL), regularization has emerged as a popular tool both in theory and practice, typically based either on an entropy bonus or a Kullback-Leibler divergence that constrains successive policies. In practice, these approaches have been shown to improve exploration, robustness and stability, giving rise to popular Deep RL algorithms such as SAC and TRPO. Policy Mirror Descent (PMD) is a theoretical framework that solves this general regularized policy optimization problem, however the closed-form solution involves the sum of all past Q-functions, which is intractable in practice. We propose and analyze PMD-like algorithms that only keep the last $M$ Q-functions in memory, and show that for finite and large enough $M$, a convergent algorithm can be derived, introducing no error in the policy update, unlike prior deep RL PMD implementations. StaQ, the resulting algorithm, enjoys strong theoretical guarantees and is competitive with deep RL baselines, while exhibiting less performance oscillation, paving the way for fully stable deep RL algorithms and providing a testbed for experimentation with Policy Mirror Descent.
Related papers
- Convergence and Sample Complexity of First-Order Methods for Agnostic Reinforcement Learning [66.4260157478436]
We study reinforcement learning in the policy learning setting.<n>The goal is to find a policy whose performance is competitive with the best policy in a given class of interest.
arXiv Detail & Related papers (2025-07-06T14:40:05Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.<n>In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.<n>We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for
Last-Iterate Convergence in Constrained MDPs [31.663072540757643]
Reinforcement Learning (RL) has been applied to real-world problems with increasing success.
We introduce Reinforcement Learning with Optimistic Ascent-Descent (ReLOAD)
arXiv Detail & Related papers (2023-02-02T18:05:27Z) - Regularization Guarantees Generalization in Bayesian Reinforcement
Learning through Algorithmic Stability [48.62272919754204]
We study generalization in Bayesian RL under the probably approximately correct (PAC) framework.
Our main contribution is showing that by adding regularization, the optimal policy becomes stable in an appropriate sense.
arXiv Detail & Related papers (2021-09-24T07:48:34Z) - A Policy Efficient Reduction Approach to Convex Constrained Deep
Reinforcement Learning [2.811714058940267]
We propose a new variant of the conditional gradient (CG) type algorithm, which generalizes the minimum norm point (MNP) method.
Our method reduces the memory costs by an order of magnitude, and achieves better performance, demonstrating both its effectiveness and efficiency.
arXiv Detail & Related papers (2021-08-29T20:51:32Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z) - CRPO: A New Approach for Safe Reinforcement Learning with Convergence
Guarantee [61.176159046544946]
In safe reinforcement learning (SRL) problems, an agent explores the environment to maximize an expected total reward and avoids violation of certain constraints.
This is the first-time analysis of SRL algorithms with global optimal policies.
arXiv Detail & Related papers (2020-11-11T16:05:14Z) - Mirror Descent Policy Optimization [41.46894905097985]
We propose an efficient RL algorithm, called em mirror descent policy optimization (MDPO)
MDPO iteratively updates the policy by em approximately solving a trust-region problem.
We highlight the connections between on-policy MDPO and two popular trust-region RL algorithms: TRPO and PPO, and show that explicitly enforcing the trust-region constraint is in fact em not a necessity for high performance gains in TRPO.
arXiv Detail & Related papers (2020-05-20T01:30:43Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises.
Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions.
We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, is ineffective for many RL tasks.
arXiv Detail & Related papers (2020-03-19T17:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.