Connecting phases of matter to the flatness of the loss landscape in analog variational quantum algorithms
- URL: http://arxiv.org/abs/2506.13865v2
- Date: Mon, 30 Jun 2025 16:17:09 GMT
- Title: Connecting phases of matter to the flatness of the loss landscape in analog variational quantum algorithms
- Authors: Kasidit Srimahajariyapong, Supanut Thanasilp, Thiparat Chotibut,
- Abstract summary: Variational quantum algorithms (VQAs) promise near-term quantum advantage, yet parametrized quantum states commonly built from the digital gate-based approach often suffer from scalability issues such as barren plateaus.<n>We study an analog VQA ans"atze composed of $M$ quenches of a disordered Ising chain, whose dynamics is native to several quantum simulation platforms.
- Score: 1.7136832159667206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms (VQAs) promise near-term quantum advantage, yet parametrized quantum states commonly built from the digital gate-based approach often suffer from scalability issues such as barren plateaus, where the loss landscape becomes flat. We study an analog VQA ans\"atze composed of $M$ quenches of a disordered Ising chain, whose dynamics is native to several quantum simulation platforms. By tuning the disorder strength we place each quench in either a thermalized phase or a many-body-localized (MBL) phase and analyse (i) the ans\"atze's expressivity and (ii) the scaling of loss variance. Numerics shows that both phases reach maximal expressivity at large $M$, but barren plateaus emerge at far smaller $M$ in the thermalized phase than in the MBL phase. Exploiting this gap, we propose an MBL initialisation strategy: initialise the ans\"atze in the MBL regime at intermediate quench $M$, enabling an initial trainability while retaining sufficient expressivity for subsequent optimization. The results link quantum phases of matter and VQA trainability, and provide practical guidelines for scaling analog-hardware VQAs.
Related papers
- FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation [55.12070409045766]
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years.<n>Current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization.
arXiv Detail & Related papers (2025-06-13T07:57:38Z) - Variational Quantum Simulations of a Two-Dimensional Frustrated Transverse-Field Ising Model on a Trapped-Ion Quantum Computer [0.6990493129893112]
We use the Variational Quantum Eigensolver (VQE) to compute the phases on a square lattice with periodic boundary conditions for a system of 16 sites (qubits)<n>We focus on the ground-state phase transitions of this model, where VQE succeeds in finding the dominant magnetic phases.<n>Our experiments show near perfect recovery of the magnetic phases of the frustrated model through ground-state energy, the energy derivative, and the spin correlation functions.
arXiv Detail & Related papers (2025-05-28T23:20:20Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Exploiting many-body localization for scalable variational quantum simulation [0.0]
Variational quantum algorithms have emerged as a promising approach to achieving practical quantum advantages using near-term quantum devices.
Despite their potential, the scalability of these algorithms poses a significant challenge.
We explore the many-body localization (MBL)-thermalization phase transitions within a framework of Floquet-kickd variational quantum circuits.
arXiv Detail & Related papers (2024-04-26T17:40:20Z) - A sharp phase transition in linear cross-entropy benchmarking [1.4841630983274847]
A key question in the theory of XEB is whether it approximates the fidelity of the quantum state preparation.
Previous works have shown that the XEB generically approximates the fidelity in a regime where the noise rate per qudit $varepsilon$ satisfies $varepsilon N ll 1$.
Here, we show that the breakdown of XEB as a fidelity proxy occurs as a sharp phase transition at a critical value of $varepsilon N$.
arXiv Detail & Related papers (2023-05-08T18:00:05Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Measurement-induced entanglement phase transitions in variational
quantum circuits [0.4499833362998487]
Variational quantum algorithms (VQAs) classically optimize a parametrized quantum circuit to solve a computational task.
We study the entanglement transition in variational quantum circuits endowed with intermediate projective measurements.
Our work paves an avenue for greatly improving the trainability of quantum circuits by incorporating intermediate measurement protocols in currently available quantum hardware.
arXiv Detail & Related papers (2021-11-15T19:00:28Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Discrete truncated Wigner approach to dynamical phase transitions in
Ising models after a quantum quench [0.0]
We study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench.
We find identical exponents for $alpha lesssim 0.5$, suggesting that the dynamical transitions in this regime fall into the same universality class as the nonergodic mean-field limit.
arXiv Detail & Related papers (2020-04-21T08:20:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.