Density-aware Walks for Coordinated Campaign Detection
- URL: http://arxiv.org/abs/2506.13912v1
- Date: Mon, 16 Jun 2025 18:44:38 GMT
- Title: Density-aware Walks for Coordinated Campaign Detection
- Authors: Atul Anand Gopalakrishnan, Jakir Hossain, Tuğrulcan Elmas, Ahmet Erdem Sarıyüce,
- Abstract summary: Coordinated campaigns frequently exploit social media platforms by artificially amplifying topics, making inauthentic trends appear organic, and misleading users into engagement.<n>Our work focuses on detecting coordinated campaigns by modeling the problem as a graph classification task.<n>We leverage the recently introduced Large Engagement Networks (LEN) dataset, which contains over 300 networks capturing engagement patterns from both fake and authentic trends on Twitter prior to the 2023 Turkish elections.
- Score: 1.3595147353266148
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Coordinated campaigns frequently exploit social media platforms by artificially amplifying topics, making inauthentic trends appear organic, and misleading users into engagement. Distinguishing these coordinated efforts from genuine public discourse remains a significant challenge due to the sophisticated nature of such attacks. Our work focuses on detecting coordinated campaigns by modeling the problem as a graph classification task. We leverage the recently introduced Large Engagement Networks (LEN) dataset, which contains over 300 networks capturing engagement patterns from both fake and authentic trends on Twitter prior to the 2023 Turkish elections. The graphs in LEN were constructed by collecting interactions related to campaigns that stemmed from ephemeral astroturfing. Established graph neural networks (GNNs) struggle to accurately classify campaign graphs, highlighting the challenges posed by LEN due to the large size of its networks. To address this, we introduce a new graph classification method that leverages the density of local network structures. We propose a random weighted walk (RWW) approach in which node transitions are biased by local density measures such as degree, core number, or truss number. These RWWs are encoded using the Skip-gram model, producing density-aware structural embeddings for the nodes. Training message-passing neural networks (MPNNs) on these density-aware embeddings yields superior results compared to the simpler node features available in the dataset, with nearly a 12\% and 5\% improvement in accuracy for binary and multiclass classification, respectively. Our findings demonstrate that incorporating density-aware structural encoding with MPNNs provides a robust framework for identifying coordinated inauthentic behavior on social media networks such as Twitter.
Related papers
- Cluster-Aware Attacks on Graph Watermarks [50.19105800063768]
We introduce a cluster-aware threat model in which adversaries apply community-guided modifications to evade detection.<n>Our results show that cluster-aware attacks can reduce attribution accuracy by up to 80% more than random baselines.<n>We propose a lightweight embedding enhancement that distributes watermark nodes across graph communities.
arXiv Detail & Related papers (2025-04-24T22:49:28Z) - Large Engagement Networks for Classifying Coordinated Campaigns and Organic Twitter Trends [1.3595147353266148]
Social media users and inauthentic accounts may coordinate in promoting their topics.<n>It is challenging to predict if a topic is organic or a coordinated campaign due to the lack of reliable ground truth.<n>In this paper, we create such ground truth by detecting the campaigns promoted by ephemeral astroturfing attacks.
arXiv Detail & Related papers (2025-03-01T19:50:32Z) - Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-27T12:53:25Z) - Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation [19.302294715542175]
We propose densely decoded networks (ddn), by selectively introducing 'crutch' network connections.
Such 'crutch' connections in each upsampling stage of the network decoder enhance target localization.
We also present a training strategy based on adaptive deep supervision (ads), which exploits and adapts specific attributes of input dataset.
arXiv Detail & Related papers (2024-02-05T00:44:57Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Redesigning Multi-Scale Neural Network for Crowd Counting [68.674652984003]
We introduce a hierarchical mixture of density experts, which hierarchically merges multi-scale density maps for crowd counting.
Within the hierarchical structure, an expert competition and collaboration scheme is presented to encourage contributions from all scales.
Experiments show that our method achieves the state-of-the-art performance on five public datasets.
arXiv Detail & Related papers (2022-08-04T21:49:29Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - Improving Fraud detection via Hierarchical Attention-based Graph Neural
Network [6.7713383844867385]
Graph Neural Network (HA-GNN) for fraud detection incorporates weighted adjacency matrices across different relations against camouflage.
We generate node embeddings by aggregating information from local/long-range structures and original node features.
Experiments on three real-world datasets demonstrate the effectiveness of our model over the state-of-the-arts.
arXiv Detail & Related papers (2022-02-12T16:27:16Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.