論文の概要: Comparison of ConvNeXt and Vision-Language Models for Breast Density Assessment in Screening Mammography
- arxiv url: http://arxiv.org/abs/2506.13964v1
- Date: Mon, 16 Jun 2025 20:14:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.230576
- Title: Comparison of ConvNeXt and Vision-Language Models for Breast Density Assessment in Screening Mammography
- Title(参考訳): 乳腺検診における乳腺密度評価のためのConvNeXtとVision-Languageモデルの比較
- Authors: Yusdivia Molina-Román, David Gómez-Ortiz, Ernestina Menasalvas-Ruiz, José Gerardo Tamez-Peña, Alejandro Santos-Díaz,
- Abstract要約: 本研究では,BI-RADSシステムを用いた自動分類のためのマルチモーダル法とCNN法の比較を行った。
ゼロショット分類は、微調整されたConvNeXtモデルがBioMedCLIP線形プローブよりも優れた性能を示した。
これらの結果から, マルチモーダル学習の約束にもかかわらず, エンドツーエンドの微調整を施したCNNモデルの方が, 医用画像の特化に有効であることが示唆された。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mammographic breast density classification is essential for cancer risk assessment but remains challenging due to subjective interpretation and inter-observer variability. This study compares multimodal and CNN-based methods for automated classification using the BI-RADS system, evaluating BioMedCLIP and ConvNeXt across three learning scenarios: zero-shot classification, linear probing with textual descriptions, and fine-tuning with numerical labels. Results show that zero-shot classification achieved modest performance, while the fine-tuned ConvNeXt model outperformed the BioMedCLIP linear probe. Although linear probing demonstrated potential with pretrained embeddings, it was less effective than full fine-tuning. These findings suggest that despite the promise of multimodal learning, CNN-based models with end-to-end fine-tuning provide stronger performance for specialized medical imaging. The study underscores the need for more detailed textual representations and domain-specific adaptations in future radiology applications.
- Abstract(参考訳): 乳房の乳房密度の分類は癌リスク評価に不可欠であるが,主観的解釈とサーバ間変動が原因で依然として困難である。
本研究では,BI-RADSシステムを用いたマルチモーダルおよびCNNに基づく自動分類手法を比較し,ゼロショット分類,テキスト記述による線形探索,数値ラベルによる微調整という3つの学習シナリオでBioMedCLIPとConvNeXtを評価した。
その結果、ゼロショット分類は、微調整されたConvNeXtモデルがBioMedCLIP線形プローブよりも優れた性能を示した。
線形探傷法は, 予め訓練した埋込みにより潜在性を示したが, 完全微調整よりも有効性は低かった。
これらの結果から, マルチモーダル学習の約束にもかかわらず, エンドツーエンドの微調整を施したCNNモデルの方が, 医用画像の特化に有効であることが示唆された。
この研究は、将来の放射線学への応用において、より詳細なテキスト表現とドメイン固有の適応の必要性を強調している。
関連論文リスト
- Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
病理画像分類に適したコントラスト学習に基づくマルチスケール機能融合モデルであるCMSwinKANを提案する。
マルチスケールの特徴を融合させ、対照的な学習戦略を活用することで、CMSwinKANは臨床医の包括的なアプローチを模倣する。
その結果、CMSwinKANは、既存の最先端の病理モデルよりも、大規模なデータセットで事前訓練されたモデルよりもパフォーマンスがよいことが示された。
論文 参考訳(メタデータ) (2025-04-18T15:39:46Z) - Interpretable Retinal Disease Prediction Using Biology-Informed Heterogeneous Graph Representations [40.8160960729546]
解釈可能性は、医療診断のための機械学習モデルの信頼性を高めるために不可欠である。
本研究では,確立した機械学習モデルの性能を超える手法を提案する。
論文 参考訳(メタデータ) (2025-02-23T19:27:47Z) - An analysis of data variation and bias in image-based dermatological datasets for machine learning classification [2.039829968340841]
臨床皮膚学では、分類モデルはRGB画像のみを入力として、患者の皮膚の悪性病変を検出することができる。
学習に基づくほとんどの手法では、トレーニングにおいて皮膚科のデータセットから取得したデータを用いており、これは金の基準によって大きく検証されている。
本研究の目的は,皮膚内視鏡検査と臨床検査のギャップを評価し,データセットの変動がトレーニングに与える影響を理解することである。
論文 参考訳(メタデータ) (2025-01-15T17:18:46Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
本研究では,グラフ畳み込みネットワーク(GCN)を導入し,相関行列として各カテゴリ間の先行的共起を多ラベル分類のためのディープラーニングモデルに活用する。
本稿では,GCNからの予測を融合モデルからの予測の補完情報とみなすグラフ・アンサンブル学習モデルを提案する。
論文 参考訳(メタデータ) (2023-07-04T13:19:57Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。