Evolutionary chemical learning in dimerization networks
- URL: http://arxiv.org/abs/2506.14006v1
- Date: Mon, 16 Jun 2025 21:10:12 GMT
- Title: Evolutionary chemical learning in dimerization networks
- Authors: Alexei V. Tkachenko, Bortolo Matteo Mognetti, Sergei Maslov,
- Abstract summary: We present a novel framework for chemical learning based on Competitive Dimerization Networks (CDNs)<n>We show that these networks can be trained in vitro through directed evolution.<n>A training protocol involving mutation, selection, and amplification of DNA-based components allows CDNs to robustly discriminate among noisy input patterns.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel framework for chemical learning based on Competitive Dimerization Networks (CDNs) - systems in which multiple molecular species, e.g. proteins or DNA/RNA oligomers, reversibly bind to form dimers. We show that these networks can be trained in vitro through directed evolution, enabling the implementation of complex learning tasks such as multiclass classification without digital hardware or explicit parameter tuning. Each molecular species functions analogously to a neuron, with binding affinities acting as tunable synaptic weights. A training protocol involving mutation, selection, and amplification of DNA-based components allows CDNs to robustly discriminate among noisy input patterns. The resulting classifiers exhibit strong output contrast and high mutual information between input and output, especially when guided by a contrast-enhancing loss function. Comparative analysis with in silico gradient descent training reveals closely correlated performance. These results establish CDNs as a promising platform for analog physical computation, bridging synthetic biology and machine learning, and advancing the development of adaptive, energy-efficient molecular computing systems.
Related papers
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Neural CRNs: A Natural Implementation of Learning in Chemical Reaction Networks [0.0]
We present Neural CRNs, an efficient, autonomous, and general-purpose implementation of learning within mass action chemical reaction systems.<n>CRNs are a purely analog chemical system, which encodes neural computations in the concentration dynamics of its chemical species.
arXiv Detail & Related papers (2024-08-18T01:43:26Z) - Protein binding affinity prediction under multiple substitutions applying eGNNs on Residue and Atomic graphs combined with Language model information: eGRAL [1.840390797252648]
Deep learning is increasingly recognized as a powerful tool capable of bridging the gap between in-silico predictions and in-vitro observations.
We propose eGRAL, a novel graph neural network architecture designed for predicting binding affinity changes from amino acid substitutions in protein complexes.
eGRAL leverages residue, atomic and evolutionary scales, thanks to features extracted from protein large language models.
arXiv Detail & Related papers (2024-05-03T10:33:19Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Denoise Pretraining on Nonequilibrium Molecules for Accurate and
Transferable Neural Potentials [8.048439531116367]
We propose denoise pretraining on nonequilibrium molecular conformations to achieve more accurate and transferable GNN potential predictions.
Our models pretrained on small molecules demonstrate remarkable transferability, improving performance when fine-tuned on diverse molecular systems.
arXiv Detail & Related papers (2023-03-03T21:15:22Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
We propose a novel methodology for transferring knowledge obtained from simple molecular systems to a more complex one.
We focus on the classification of high and low free-energy states.
Our results show a remarkable AUC of 0.92 for transfer learning from tri-alanine to the deca-alanine system.
arXiv Detail & Related papers (2022-05-06T16:21:00Z) - Using Genetic Programming to Predict and Optimize Protein Function [65.25258357832584]
We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
arXiv Detail & Related papers (2022-02-08T18:08:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Protein Structured Reservoir computing for Spike-based Pattern
Recognition [0.37798600249187286]
We implement a reservoir computing on a single protein molecule and introduce neuromorphic connectivity with a small-world networking property.
We apply on a single readout layer various training methods in a supervised fashion to investigate whether the molecular structured Reservoir Computing system is capable to deal with machine learning benchmarks.
The RC network is evaluated as a proof-of-concept on the handwritten digit images from the MNIST dataset and demonstrates acceptable classification accuracy in comparison with other similar approaches.
arXiv Detail & Related papers (2020-08-07T18:30:12Z) - Deep Molecular Programming: A Natural Implementation of Binary-Weight
ReLU Neural Networks [7.700240949386079]
We show how a BinaryConnect neural network trained in silico can be compiled to an equivalent chemical reaction network.
Our work sets the stage for rich knowledge transfer between neural network and molecular programming communities.
arXiv Detail & Related papers (2020-03-30T18:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.