論文の概要: Automatic Extraction of Clausal Embedding Based on Large-Scale English Text Data
- arxiv url: http://arxiv.org/abs/2506.14064v1
- Date: Mon, 16 Jun 2025 23:48:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.270031
- Title: Automatic Extraction of Clausal Embedding Based on Large-Scale English Text Data
- Title(参考訳): 大規模英語テキストデータに基づくクラウス埋め込みの自動抽出
- Authors: Iona Carslaw, Sivan Milton, Nicolas Navarre, Ciyang Qing, Wataru Uegaki,
- Abstract要約: 本稿では、英語の埋め込み節の自然発生例を検知し、注釈付けするための方法論的アプローチを提案する。
我々のツールは、我々のデータセットGolden Embedded Clause Set (GECS)で評価されている。
本稿では,オープンソースコーパスDolmaから抽出した自然発生英語の埋め込み節の大規模データセットについて述べる。
- 参考スコア(独自算出の注目度): 1.2582887633807602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For linguists, embedded clauses have been of special interest because of their intricate distribution of syntactic and semantic features. Yet, current research relies on schematically created language examples to investigate these constructions, missing out on statistical information and naturally-occurring examples that can be gained from large language corpora. Thus, we present a methodological approach for detecting and annotating naturally-occurring examples of English embedded clauses in large-scale text data using constituency parsing and a set of parsing heuristics. Our tool has been evaluated on our dataset Golden Embedded Clause Set (GECS), which includes hand-annotated examples of naturally-occurring English embedded clause sentences. Finally, we present a large-scale dataset of naturally-occurring English embedded clauses which we have extracted from the open-source corpus Dolma using our extraction tool.
- Abstract(参考訳): 言語学者にとって、組込み節は、構文的特徴と意味的特徴の複雑な分布のため、特に関心が寄せられている。
しかし、現在の研究は、これらの構造を調べるためにスキーマ的に作成された言語例に依存しており、統計情報や大きな言語コーパスから得られる自然発生例を欠いている。
そこで本研究では,大規模テキストデータ中の英文埋め込み節の自然発生例を検出し,注釈付けする手法を提案する。
本手法は,本データセットのGolden Embedded Clause Set (GECS) を用いて評価されている。
最後に,オープンソースコーパスDolmaから抽出した英文埋め込み節の大規模データセットを抽出ツールを用いて提案する。
関連論文リスト
- Large corpora and large language models: a replicable method for automating grammatical annotation [0.0]
英語評価動詞構築における形式的変化の事例研究に応用された方法論的パイプライン「consider X (as) (to be) Y」を紹介する。
少数のトレーニングデータだけで、保留中のテストサンプルで90%以上の精度でモデルに到達します。
本研究は, 文法的構成と文法的変化および変化に関する幅広いケーススタディに対して, 結果の一般化可能性について論じる。
論文 参考訳(メタデータ) (2024-11-18T03:29:48Z) - A Measure for Transparent Comparison of Linguistic Diversity in Multilingual NLP Data Sets [1.1647644386277962]
多言語NLPで達成された進歩を追跡するため、タイポロジー的に多様性のあるベンチマークがますます作成されている。
本稿では,参照言語サンプルに対してデータセットの言語多様性を評価することを提案する。
論文 参考訳(メタデータ) (2024-03-06T18:14:22Z) - ImPaKT: A Dataset for Open-Schema Knowledge Base Construction [10.073210304061966]
ImPaKTは、ショッピングドメイン(商品購入ガイド)におけるC4コーパスから約2500のテキストスニペットからなるオープンスキーマ情報抽出用データセットである。
本研究では,オープンソースUL2言語モデルをデータセットのサブセットに微調整し,製品購入ガイドのコーパスから含意関係を抽出し,その結果の予測を人為的に評価することで,このアプローチの能力を評価する。
論文 参考訳(メタデータ) (2022-12-21T05:02:49Z) - Finding Dataset Shortcuts with Grammar Induction [85.47127659108637]
我々は,NLPデータセットのショートカットの特徴付けと発見に確率文法を用いることを提案する。
具体的には、文脈自由文法を用いて文分類データセットのパターンをモデル化し、同期文脈自由文法を用いて文ペアを含むデータセットをモデル化する。
その結果得られた文法は、単純かつ高レベルの機能を含む、多くのデータセットで興味深いショートカット機能を示す。
論文 参考訳(メタデータ) (2022-10-20T19:54:11Z) - BenchCLAMP: A Benchmark for Evaluating Language Models on Syntactic and
Semantic Parsing [55.058258437125524]
本稿では,制約付きLanguage Model Parsingを評価するベンチマークであるBenchCLAMPを紹介する。
APIを通じてのみ利用可能な2つのGPT-3変種を含む8つの言語モデルをベンチマークする。
実験により,エンコーダ-デコーダ事前学習言語モデルでは,モデル出力が有効であると制約された場合に,構文解析や意味解析の最先端手法を超えることができることがわかった。
論文 参考訳(メタデータ) (2022-06-21T18:34:11Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
我々は、標準発話とプログラムの訓練例を文法から言い換えて、ゼロショット学習を分析する。
改良された文法,より強力なパラフレーズ,効率的な学習手法を用いて,これらのギャップを埋めることを提案する。
我々のモデルはラベル付きデータゼロの2つの意味解析ベンチマーク(Scholar, Geo)で高い性能を達成する。
論文 参考訳(メタデータ) (2021-10-15T21:41:16Z) - A Comparative Study on Structural and Semantic Properties of Sentence
Embeddings [77.34726150561087]
本稿では,関係抽出に広く利用されている大規模データセットを用いた実験セットを提案する。
異なる埋め込み空間は、構造的および意味的特性に対して異なる強度を持つことを示す。
これらの結果は,埋め込み型関係抽出法の開発に有用な情報を提供する。
論文 参考訳(メタデータ) (2020-09-23T15:45:32Z) - ToTTo: A Controlled Table-To-Text Generation Dataset [61.83159452483026]
ToTToはオープンドメインの英語のテーブル・トゥ・テキストのデータセットで、12万以上のトレーニングサンプルがある。
本稿では、ウィキペディアから既存の候補文を直接修正するデータセット構築プロセスを紹介する。
通常流動的であるが、既存の方法は多くの場合、表がサポートしていないフレーズを幻覚させる。
論文 参考訳(メタデータ) (2020-04-29T17:53:45Z) - Extractive Summarization as Text Matching [123.09816729675838]
本稿では,ニューラル抽出要約システムの構築方法に関するパラダイムシフトを作成する。
抽出した要約タスクを意味テキストマッチング問題として定式化する。
我々はCNN/DailyMailの最先端抽出結果を新しいレベル(ROUGE-1の44.41)に推し進めた。
論文 参考訳(メタデータ) (2020-04-19T08:27:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。