Into the Unknown: Applying Inductive Spatial-Semantic Location Embeddings for Predicting Individuals' Mobility Beyond Visited Places
- URL: http://arxiv.org/abs/2506.14070v1
- Date: Tue, 17 Jun 2025 00:00:09 GMT
- Title: Into the Unknown: Applying Inductive Spatial-Semantic Location Embeddings for Predicting Individuals' Mobility Beyond Visited Places
- Authors: Xinglei Wang, Tao Cheng, Stephen Law, Zichao Zeng, Ilya Ilyankou, Junyuan Liu, Lu Yin, Weiming Huang, Natchapon Jongwiriyanurak,
- Abstract summary: CaLLiPer is a representation learning framework that fuses spatial coordinates and semantic features of points of interest through contrastive learning.<n>Our findings highlight the potential of multimodal, inductive location embeddings to advance the capabilities of human mobility prediction systems.
- Score: 3.131843231859519
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predicting individuals' next locations is a core task in human mobility modelling, with wide-ranging implications for urban planning, transportation, public policy and personalised mobility services. Traditional approaches largely depend on location embeddings learned from historical mobility patterns, limiting their ability to encode explicit spatial information, integrate rich urban semantic context, and accommodate previously unseen locations. To address these challenges, we explore the application of CaLLiPer -- a multimodal representation learning framework that fuses spatial coordinates and semantic features of points of interest through contrastive learning -- for location embedding in individual mobility prediction. CaLLiPer's embeddings are spatially explicit, semantically enriched, and inductive by design, enabling robust prediction performance even in scenarios involving emerging locations. Through extensive experiments on four public mobility datasets under both conventional and inductive settings, we demonstrate that CaLLiPer consistently outperforms strong baselines, particularly excelling in inductive scenarios. Our findings highlight the potential of multimodal, inductive location embeddings to advance the capabilities of human mobility prediction systems. We also release the code and data (https://github.com/xlwang233/Into-the-Unknown) to foster reproducibility and future research.
Related papers
- From Points to Places: Towards Human Mobility-Driven Spatiotemporal Foundation Models via Understanding Places [0.30693357740321775]
This paper advocates for a new class of spatial foundation models that integrate geolocation semantics with human mobility across multiple scales.<n>Our goal is to guide the development of scalable, context-aware models for next-generation geospatial intelligence.
arXiv Detail & Related papers (2025-06-17T14:27:24Z) - Identifying and Characterising Higher Order Interactions in Mobility Networks Using Hypergraphs [1.1060425537315088]
We propose co-visitation hypergraphs, a model that leverages temporal observation windows to extract group interactions between locations.<n>Using frequent pattern mining, our approach constructs hypergraphs that capture dynamic mobility behaviors across different spatial and temporal scales.<n>Our results demonstrate that our hypergraph-based mobility analysis framework is a valuable tool with potential applications in diverse fields.
arXiv Detail & Related papers (2025-03-24T11:29:06Z) - Pre-trained Transformer Uncovers Meaningful Patterns in Human Mobility Data [0.0]
We show that a transformer pre-trained on country-scale unlabeled human mobility data learns embeddings capable of developing a deep understanding of the target geography.<n>We evaluate the performance of our pre-trained embeddings in encapsulating a broad spectrum of concepts related to human mobility.
arXiv Detail & Related papers (2024-06-06T12:59:46Z) - Pretrained Mobility Transformer: A Foundation Model for Human Mobility [11.713796525742405]
textbfPretrained textbfMobility textbfTransformer (PMT)
textbfMobility textbfTransformer (PMT)
textbfPretrained textbfMobility textbfTransformer (PMT)
arXiv Detail & Related papers (2024-05-29T00:07:22Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Context-aware multi-head self-attentional neural network model for next
location prediction [19.640761373993417]
We utilize a multi-head self-attentional (A) neural network that learns location patterns from historical location visits.
We demonstrate that proposed the model outperforms other state-of-the-art prediction models.
We believe that the proposed model is vital for context-aware mobility prediction.
arXiv Detail & Related papers (2022-12-04T23:40:14Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.