Identifying and Characterising Higher Order Interactions in Mobility Networks Using Hypergraphs
- URL: http://arxiv.org/abs/2503.18572v1
- Date: Mon, 24 Mar 2025 11:29:06 GMT
- Title: Identifying and Characterising Higher Order Interactions in Mobility Networks Using Hypergraphs
- Authors: Prathyush Sambaturu, Bernardo Gutierrez, Moritz U. G. Kraemer,
- Abstract summary: We propose co-visitation hypergraphs, a model that leverages temporal observation windows to extract group interactions between locations.<n>Using frequent pattern mining, our approach constructs hypergraphs that capture dynamic mobility behaviors across different spatial and temporal scales.<n>Our results demonstrate that our hypergraph-based mobility analysis framework is a valuable tool with potential applications in diverse fields.
- Score: 1.1060425537315088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding human mobility is essential for applications ranging from urban planning to public health. Traditional mobility models such as flow networks and colocation matrices capture only pairwise interactions between discrete locations, overlooking higher-order relationships among locations (i.e., mobility flow among two or more locations). To address this, we propose co-visitation hypergraphs, a model that leverages temporal observation windows to extract group interactions between locations from individual mobility trajectory data. Using frequent pattern mining, our approach constructs hypergraphs that capture dynamic mobility behaviors across different spatial and temporal scales. We validate our method on a publicly available mobility dataset and demonstrate its effectiveness in analyzing city-scale mobility patterns, detecting shifts during external disruptions such as extreme weather events, and examining how a location's connectivity (degree) relates to the number of points of interest (POIs) within it. Our results demonstrate that our hypergraph-based mobility analysis framework is a valuable tool with potential applications in diverse fields such as public health, disaster resilience, and urban planning.
Related papers
- Graph Network Modeling Techniques for Visualizing Human Mobility Patterns [8.537183852577687]
We develop a methodology by embedding graphs into a continuous space, which alleviates issues related to fast graph matching, graph time-series modeling, and visualization of mobility dynamics.
We demonstrate how mobility data collected from trajectories could be transformed into network structures and patterns of mobility flow changes, and can be used for downstream tasks reporting approx 40% decrease in error on average in matched graphs vs unmatched ones.
arXiv Detail & Related papers (2025-04-04T02:21:44Z) - Gaze-guided Hand-Object Interaction Synthesis: Dataset and Method [61.19028558470065]
We present GazeHOI, the first dataset to capture simultaneous 3D modeling of gaze, hand, and object interactions.
To tackle these issues, we propose a stacked gaze-guided hand-object interaction diffusion model, named GHO-Diffusion.
We also introduce HOI-Manifold Guidance during the sampling stage of GHO-Diffusion, enabling fine-grained control over generated motions.
arXiv Detail & Related papers (2024-03-24T14:24:13Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Spatiotemporal-Augmented Graph Neural Networks for Human Mobility Simulation [35.89805766554052]
We propose a novel framework to model the dynamictemporal effects of locations, namely SRpatio-Augmented gaph neural networks.
The STAR framework designs varioustemporal graphs to capture the behaviors correspondence and builds a novel branch to simulate the varying dwells in locations, which duration is finally optimized in an adversarial manner.
arXiv Detail & Related papers (2023-06-15T11:47:45Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - AttnMove: History Enhanced Trajectory Recovery via Attentional Network [15.685998183691655]
We propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations.
We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-01-03T15:45:35Z) - Flow descriptors of human mobility networks [0.0]
We propose a systematic analysis to characterize mobility network flows and topology and assess their impact into individual traces.
This framework is suitable to assess urban planning, optimize transportation, measure the impact of external events and conditions, monitor internal dynamics and profile users according to their movement patterns.
arXiv Detail & Related papers (2020-03-16T15:27:00Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis [10.335486459171992]
We propose an unsupervised neural approach for mobility behavior clustering, called Deep Embedded TrajEctor ClusTering network (DETECT)
DETECT operates in three parts: first it transforms the trajectories by summarizing their critical parts and augmenting them with context derived from their geographical locality.
In the second part, it learns a powerful representation of trajectories in the latent space of behaviors, thus enabling a clustering function (such as $k$means) to be applied.
arXiv Detail & Related papers (2020-03-03T06:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.