論文の概要: RadFabric: Agentic AI System with Reasoning Capability for Radiology
- arxiv url: http://arxiv.org/abs/2506.14142v1
- Date: Tue, 17 Jun 2025 03:10:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.308318
- Title: RadFabric: Agentic AI System with Reasoning Capability for Radiology
- Title(参考訳): RadFabric:放射線学のための推論機能を備えたエージェントAIシステム
- Authors: Wenting Chen, Yi Dong, Zhaojun Ding, Yucheng Shi, Yifan Zhou, Fang Zeng, Yijun Luo, Tianyu Lin, Yihang Su, Yichen Wu, Kai Zhang, Zhen Xiang, Tianming Liu, Ninghao Liu, Lichao Sun, Yixuan Yuan, Xiang Li,
- Abstract要約: RadFabricは、総合的なCXR解釈のための視覚的およびテキスト分析を統合するマルチエージェント、マルチモーダル推論フレームワークである。
システムは、病理診断に特殊なCXRエージェント、正確な解剖学的構造に視覚所見をマッピングする解剖学的解釈エージェント、および視覚的、解剖学的、臨床データを透明かつ証拠に基づく診断に合成する大規模なマルチモーダル推論モデルを利用した推論エージェントを使用する。
- 参考スコア(独自算出の注目度): 61.25593938175618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest X ray (CXR) imaging remains a critical diagnostic tool for thoracic conditions, but current automated systems face limitations in pathology coverage, diagnostic accuracy, and integration of visual and textual reasoning. To address these gaps, we propose RadFabric, a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation. RadFabric is built on the Model Context Protocol (MCP), enabling modularity, interoperability, and scalability for seamless integration of new diagnostic agents. The system employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses. RadFabric achieves significant performance improvements, with near-perfect detection of challenging pathologies like fractures (1.000 accuracy) and superior overall diagnostic accuracy (0.799) compared to traditional systems (0.229 to 0.527). By integrating cross modal feature alignment and preference-driven reasoning, RadFabric advances AI-driven radiology toward transparent, anatomically precise, and clinically actionable CXR analysis.
- Abstract(参考訳): 胸部X線画像(CXR)は胸部疾患の診断ツールとして依然として重要であるが、現在の自動化システムは、病態のカバレッジ、診断精度、視覚的およびテキスト的推論の統合に限界に直面している。
これらのギャップに対処するために,CXRの総合的な解釈のための視覚的・テキスト的分析を統一するマルチエージェント・マルチモーダル推論フレームワークであるRadFabricを提案する。
RadFabric は Model Context Protocol (MCP) 上に構築されており、新しい診断エージェントをシームレスに統合するためのモジュール性、相互運用性、スケーラビリティを実現する。
このシステムは、病理診断に特殊なCXRエージェント、正確な解剖学的構造に視覚所見をマッピングする解剖学的解釈エージェント、および視覚的、解剖学的、臨床データを透明かつ証拠に基づく診断に合成する大規模なマルチモーダル推論モデルを利用した推論エージェントを使用する。
RadFabric は従来のシステム (0.229 から 0.527 ) と比較して、骨折 (10000 の精度) や全体的な診断精度 (0.799) などの難治性疾患をほぼ完全に検出するなど、大幅な性能向上を実現している。
クロスモーダルな特徴アライメントと嗜好駆動推論を統合することで、RadFabricは、透過的で解剖学的に正確で臨床的に実行可能なCXR分析に向けて、AI駆動の放射線学を前進させる。
関連論文リスト
- Knowledge-Augmented Language Models Interpreting Structured Chest X-Ray Findings [44.99833362998488]
本稿では,胸部X線解釈に強力なテキスト中心言語モデルを利用する新しいフレームワークであるCXR-TextInterを紹介する。
我々は,このLCM中心のアプローチを統合医療知識モジュールで強化し,臨床推論を強化する。
我々の研究は医療画像AIの代替パラダイムを検証し、高度なLLM機能を活用する可能性を示している。
論文 参考訳(メタデータ) (2025-05-03T06:18:12Z) - CBM-RAG: Demonstrating Enhanced Interpretability in Radiology Report Generation with Multi-Agent RAG and Concept Bottleneck Models [1.7042756021131187]
本稿では,CBM(Concept Bottleneck Models)とRAG(Multi-Agent Retrieval-Augmented Generation)システムを組み合わせた自動放射線学レポート生成フレームワークを提案する。
CBMは胸部X線の特徴を人間の理解できない臨床概念にマッピングし、透明な疾患分類を可能にする。
RAGシステムはマルチエージェントのコラボレーションと外部知識を統合し、文脈的にリッチなエビデンスベースのレポートを生成する。
論文 参考訳(メタデータ) (2025-04-29T16:14:55Z) - Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data [0.0]
本研究では,SIGLIPとGemma-3bアーキテクチャを併用したVLM(Vision-Language Model)を提案する。
VLMは胸部X線からの視覚データを臨床コンテキストと組み合わせて、詳細なコンテキスト認識診断レポートを生成する。
結石,空洞,結節などの急性TBの病態は,高い精度とリコールで検出された。
論文 参考訳(メタデータ) (2025-03-17T14:08:35Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
人工知能(AI)に基づく合成データ生成は、臨床医学の届け方を変えることができる。
本研究は,無線カプセル内視鏡(WCE)画像を用いた炎症性腸疾患(IBD)の診断における概念実証による医療用SDGの臨床評価に焦点を当てた。
その結果、TIDE-IIは、最先端の生成モデルと比較して品質が向上し、臨床的に可塑性で、非常に現実的なWCE画像を生成することがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
胸部X線(CXR)を低分解能で診断する上での課題について検討した。
高分解能CXRイメージングは、結節や不透明など、小さなが重要な異常を識別するために重要である。
本稿では,MLCAK(Multilevel Collaborative Attention Knowledge)法を提案する。
論文 参考訳(メタデータ) (2024-05-22T06:10:54Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。